The Fibonacci word sequence proceeds as follows:

\[A, AB, ABA, ABAAB, ABAABABA, \ldots \]

Each string is the concatenation of the previous two. Denote the \(n \)th word in the sequence by \(S_n(A, B) \), so for instance \(S_3(A, B) = ABA \). Note the number of \(A \)'s in \(S_n(A, B) \) is \(F_{n-1} \), and the number of \(B \)'s is \(F_{n-2} \), where \(F_n \) denotes the \(n \)th Fibonacci number.

Problem. Suppose \(X \) and \(Y \) are noncommuting variables satisfying the relation \(XY = qXY \), where \(q \) commutes with both \(X \) and \(Y \).

The Fibonacci word \(S_n(X, Y) \) will simplify to \(q^{G(n)} X^{F_n} Y^{F_{n-1}} \) for some exponents \(G(n) \) depending on \(n \). Express \(G(n) - G(n-1) - G(n-2) \) in terms of Fibonacci numbers, with explanation.

- Partial credit may be given for partial answers.
- Each POW will be due the following week at 1pm.
- Questions? Email: bthorner@unomaha.edu
- Submit solutions to (above email), DSC 210, or DSC 203.
- POWs, solutions, backgrounds, leaderboard available at