Solution to Problem $\diamond -8$

Problem: For which values of a parameter a the equation

(*) $(a^2+1)(x^2+y^2) - 2(a+1)(x+y) + 2(1+2axy) = 0$

has exactly one solution $(x, y) \in \mathbb{R}^2$?

Solution. Equation (*) can be transformed equivalently to $(a^2x^2+2axy+y^2)+(a^2y^2+2axy+x^2)-2(ax+y)-2(ay+x)+2=0$ and then to

 $[(ax+y)^2 - 2(ax+y) + 1] + [(ay+x)^2 - 2(ay+x) + 1] = 0.$

Consequently, equation (\circledast) is equivalent to

 $(ax + y - 1)^{2} + (ay + x - 1)^{2} = 0.$

Sum of two squares of real numbers is zero if and only if both numbers are 0. Therefore, Equation (\circledast) is equivalent to the following system of two linear equations:

$$ax + y = 1$$
 and $x + ay = 1$

If a = 0 then the system has exactly one solution x = y = 1. Otherwise, the linear equations represent lines with slopes $-\frac{1}{a}$ and -a. They intersect at exactly one point if and only if they are not parallel, i.e., they have different slopes. Hence, equation (\circledast) has exactly one solution if and only if $a \notin \{-1, 1\}$.

Correct solution was received from :

(1) Grant Moles