Solution to Problem $\diamondsuit-7$

Problem: Find all functions
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
 satisfying
 $f(x+y) = f(2x) + f(3y)$ for all real x, y .

Solution. Suppose that a function f satsifies the conditions stated in the problem.

Fix $t \in \mathbb{R}$ for a moment. Considering $x = y = \frac{1}{3}t$ we have

$$f(\frac{2}{3}t) = f(\frac{1}{3}t + \frac{1}{3}t) = f(\frac{2}{3}t) + f(t),$$

and hence f(t) = 0.

Since t above was arbitrary, we conclude that any function satisfying the demands of the problem must have the constant value 0. Finally we note that the function $f_0(x) = 0$ indeed has the required property:

$$f_0(x+y) = 0 = 0 + 0 = f_0(2x) + f_0(3y).$$

Correct solution was received from :

(1) Jacob Cleveland	POW 7: ◊
(2) Grant Moles	POW 7: 🗇
(3) ZACH SABATA	POW 7: 🗇
(4) Brad Tuttle	POW 7: ◊