Solution to Problem $\diamondsuit-5$

Problem: Find all complex numbers x, y, z which satisfy $x + y + z = x^2 + y^2 + z^2 = x^3 + y^3 + z^3 = 3.$

Solution. First we note that 1, 1, 1 is a solution to our system of three equations.

Suppose that complex number x, y, z satisfy

(1)
$$x + y + z = 3$$
,
(2) $x^2 + y^2 + z^2 = 3$,
(3) $x^3 + y^3 + z^3 = 3$.

Since

(4)
$$(x + y + z)^2 = (x^2 + y^2 + z^2) + 2(xy + yz + zx),$$

we have $3^2 = 3 + 2(xy + yz + zx)$, so we conclude that

(5) xy + yz + zx = 3.

Since

$$(x+y+z)^3 = (x^3+y^3+z^3) + 3(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2) + 6xyz,$$
 we have

(6)
$$8 = (x^2y + xy^2 + y^2z + yz^2 + z^2x + zx^2) + 2xyz.$$

Now,

(7)
$$(x + y + z)(xy + yz + zx) = (x^2y + xy^2 + y^2z + yz^2 + z^2x + zx^2) + 3xyz,$$

and hence

(8) $x^2y + xy^2 + y^2z + yz^2 + z^2x + zx^2 = 9 - 3xyz$. Together with equation (6) this gives 8 = 9 - 3xyz + 2xyz. Thus

(9) xyz = 1.

Vieta's formulas and equations (1), (5) and (9) imply that each of the numbers x, y, z is a root of the cubic

$$w^3 - 3w^2 + 3w - 1 = (w - 1)^3.$$

Consequently $x = y = z = 1$

Correct solution was received from :

(1) Grant Moles POW 5: \diamond