Solution to Problem $\diamondsuit-3$

Problem: Find the maximum height above the x-axis of the cardioid $r = 1 + \cos(\theta)$.

Solution. On the given cardioid,

$$x = (1 + \cos(\theta))\cos(\theta)$$
 and $y = (1 + \cos(\theta))\sin(\theta)$.

The question is to find the maximum value y_{max} of y. Note that y > 0 is equivalent to $\sin(\theta) > 0$. From

$$\frac{dy}{d\theta} = 2\cos^2(\theta) + \cos(\theta) - 1$$

we get that the critical numbers of the function $y = y(\theta)$ are the values of θ for which $\cos(\theta) = -1$ or $\cos(\theta) = \frac{1}{2}$. Since $y_{\max} > 0$ (and thus $\sin(\theta) > 0$) it follows that θ_{\max} giving the maximum value y_{\max} of y satisfies

$$\sin(\theta_{\max}) = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$$

and the maximum height equals

$$y_{\max} = (1 + \frac{1}{2})\frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{4}.$$

CORRECT SOLUTION WAS RECEIVED FROM :

(1) JACOB CLEVELAND	POW 3: 🗇
(2) GAGE HOEFER	POW 3: 🗇
(3) SARAH MCCARTY	POW 3: 🗇
(4) Grant Moles	POW 3: 🗇
(5) ZACH SABATA	POW 3: 🗇
(6) Brad Tuttle	POW 3: 🗇