Solution to Problem $\diamond -2$

Problem: For what values of the constant c > 0 does the equation $\ln(x) = cx^2$ have solutions?

Solution. Assume c > 0 and let $f(x) = \ln(x) - cx^2$ for x > 0. Thus the domain of f is the interval $(0, \infty)$. Note that

$$\lim_{x \to 0^+} f(x) = \lim_{x \to \infty} f(x) = -\infty.$$

From $f'(x) = \frac{1}{x} - 2cx$ it follows that there is a local (and absolute) maximum at $x = \frac{1}{\sqrt{2c}}$. Since the function f is continuous on its domain, by the Intermediate Value Theorem, it will have a root if and only if $f\left(\frac{1}{\sqrt{2c}}\right) \ge 0$. But

$$\ln\left(\frac{1}{\sqrt{2c}}\right) - c \cdot \frac{1}{2c} \ge 0 \quad \text{if and only if}$$
$$\ln\left(\frac{1}{\sqrt{2c}}\right) \ge \frac{1}{2} \quad \text{if and only if}$$

$$c \le \frac{1}{2e}.$$

Consequently, if c > 0 then the equation $\ln(x) = cx^2$ has solutions if and only if $c \leq \frac{1}{2e}$.

CORRECT SOLUTION WAS RECEIVED FROM :

(1) JACOB CLEVELAND	POW 2: 🛇
(2) Grant Moles	POW 2: 🛇
(3) ZACH SABATA	POW 2: 🛇
(4) Brad Tuttle	POW 2: 🛇