Problem: Let X be the set $\{1, 2, ..., 20\}$ and let P be the set of all 9-element subsets of X. Show that for every function $f : P \longrightarrow X$ we can find a 10-element subset Y of X, such that $f(Y \setminus \{k\}) \neq k$ for any $k \in Y$.

Solution. Put

$$\mathcal{Y} = \{ (S,k) \in P \times X : f(S) = k \}.$$

Evidently, the set \mathcal{Y} has $\binom{20}{9}$ elements, since we can choose any $S \in P$ and k is then fixed. Now let

$$\mathcal{X} = \left\{ (Y,k) : k \in Y \subseteq X \land |Y| = 10 \land f(Y \setminus \{k\}) = k \right\},\$$

and let

$$Q = \left\{ Y \subseteq X : \left(\exists k \in X \right) \left((Y, k) \in \mathcal{X} \right) \right\}.$$

Clearly $|Q| \leq |\mathcal{X}|$. The mapping

$$\pi: \mathcal{X} \longrightarrow \mathcal{Y}: (Y, k) \to (Y \setminus \{k\}, k)$$

is an injection because if $(Y \setminus \{k\}, k) = (Y' \setminus \{k'\}, k')$, then k = k' and hence Y = Y'. Consequently,

$$|Q| \le |\mathcal{X}| \le |\mathcal{Y}| = \binom{20}{9}.$$

But there are $\binom{20}{10}$ subsets $Y \subseteq X$ with 10 elements, so at least $\binom{20}{10} - \binom{20}{9}$ of them (more than 16000) do not belong to Q, in other words they are such that $f(Y \setminus \{k\}) \neq k$ for any $k \in Y$.

Correct solution was received from :

(1) Grant Moles

POW 12: 🗇