Solution to Problem $\diamondsuit -10$

Problem: How many solutions in real numbers does the equation

$$(\heartsuit) \qquad (\sqrt{3}-1)^x = 2(\sqrt{2}+1)^x + 1$$

have?

Solution. First we know that the function

$$F(x) = (\sqrt{3} - 1)^x - 2(\sqrt{2} + 1)^x - 1, \qquad x \in \mathbb{R}$$

is differentiable on \mathbb{R} and F(0) = -2 < 0. Also,

- $\lim_{x \to -\infty} (\sqrt{3} 1)^x = \infty$ (since $\sqrt{3} 1 < 1$), and $\lim_{x \to -\infty} (\sqrt{2} + 1)^x = 0$ (since $\sqrt{2} + 1 > 1$).

Consequently $\lim_{x \to -\infty} F(x) = \infty$ and for sufficiently small x^* we will have $F(x^*) > 0$. Therefore, by the Intermediate Value Theorem, the function F takes value 0 for some $x_0 < 0$ and the equation (\heartsuit) has at least one solution.

Now note that, for every $x \in \mathbb{R}$,

$$F'(x) = \ln(\sqrt{3} - 1) \cdot (\sqrt{3} - 1)^x - 2\ln(\sqrt{2} + 1) \cdot (\sqrt{2} + 1)^x.$$

and $\ln(\sqrt{3}-1) < 0$, $2\ln(\sqrt{2}+1) > 0$, $(\sqrt{3}-1)^x > 0$ and $(\sqrt{2}+1)^{-1} < 0$ $(1)^x > 0$. Therefore F'(x) < 0 for all $x \in \mathbb{R}$ and the function F is stricly decreasing. In particular, F is one-to-one. Consequently, there is exactly one solution to the equation (\heartsuit) .

CORRECT SOLUTION WAS RECEIVED FROM :

(1)	Grant Moles	POW	10:	\diamond
(2)	Zach Sabata	POW	10:	\diamond