Solution to Problem $\diamond -1$

Problem: Let $\mathbb{N} = \{1, 2, 3, 4, ...\}$ be the set of all natural numbers and let | be the divisibility relation on \mathbb{N} , *i.e.*,

 $m \mid n$ if and only if $(\exists k \in \mathbb{N})(m \cdot k = n).$

We say that a set $A \subseteq \mathbb{N}$ is a \mid -chain if $(\forall n, m \in A)(n \mid m \lor m \mid n)$, and the set A will be called an \mid -antichain if $(\forall n, m \in A)(n \mid m \Rightarrow m = n)$. Suppose that we have finitely many \mid -chains $A_1, A_2, \ldots, A_k \subseteq \mathbb{N}$ and finitely many \mid -antichains $B_1, B_2, \ldots, B_\ell \subseteq \mathbb{N}$. Show that

 $A_1 \cup A_2 \cup \ldots \cup A_k \cup B_1 \cup B_2 \cup \ldots \cup B_\ell \neq \mathbb{N}.$

Solution. For $m \in \mathbb{N}$ let $\Psi(m)$ be the number of primes in the prime factorization counting with repetitions (so $\Psi(2^5 \cdot 3^6 \cdot 7^3) = 14$). Note that

 $(\circledast)_1$ if $n|m, n \neq m$, then $\Psi(n) < \Psi(m) < m$ and consequently

 $(\circledast)_2$ if $A \subseteq \mathbb{N}$ is a $|-\text{chain and } m \in A$, then $|\{a \in A : a < m\}| \leq \Psi(m)$.

Let $A_1, A_2, \ldots, A_k \subseteq \mathbb{N}$ be non-empty |-chains. Every finite |-chain can be extended to an infinite chain (e.g., by multiplying the largest element by powers of 2), we may assume that each A_i is infinite.

Also, let $B_1, B_2, \ldots, B_\ell \subseteq \mathbb{N}$ be non-empty |-antichains. For $i = 1, \ldots, \ell$ put $b_i = \min(B_i)$ and note that

 $(\circledast)_3$ no element of $B_i \setminus \{b_i\}$ is a multiple of b_i .

Choose a prime number p so large that for every $j = 1, \ldots, k$

 $(\circledast)_4 \ b_1 \cdot \ldots \cdot b_\ell + 2 < |\{a \in A_j : a < p\}|.$

Consider the number $N = p \cdot b_1 \cdot \ldots \cdot b_\ell$. Since N is a multiple of b_i (for each $i = 1, \ldots, \ell$), it follows from $(\circledast)_3$ that

 $(\heartsuit)_1 \ N \notin B_i \text{ for all } i = 1, \dots, \ell.$

Now, fix $j \in \{1, \ldots, k\}$ and consider $M_j = \max(\{a \in A_j : a < N\})$. It follows from $(\circledast)_4$ and $(\circledast)_2$ that

$$\Psi(N) \le b_1 \cdot \ldots \cdot b_{\ell} + 1 < |\{a \in A_j : a < M_j\}| < \Psi(M_j).$$

By $(\circledast)_1$ we may conclude now that M_j does not divide N, and consequently $N \notin A_j$. Thus we have shown that

 $(\heartsuit)_2 \ N \notin A_j \text{ for all } j = 1, \dots, k.$ Putting $(\heartsuit)_1$ and $(\heartsuit)_2$ together we get $N \notin A_1 \cup A_2 \cup \ldots \cup A_k \cup B_1 \cup B_2 \cup \ldots \cup B_\ell.$ \square

CORRECT SOLUTION WAS RECEIVED FROM :

(1) Grant Moles POW 1: \diamond