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Problem 1: In a square with sides of length 10 in the centers of adjacent sides were
connected by line segments and resulting four triangle were cut off. What is the area of
the remaining figure?

Solution: After cutting off the corners we are left with a square. The four triangles that
were cut off can be put together to create a congruent square. Therefore, the are of the
remaining part is a half of the area of the original square, i.e.,

1

2
· 10 · 10 = 50 [in2].

Problem 2: A honeycomb is a mass of hexagonal prismatic wax cells built by honey
bees. The figure represents a honeycomb with “side” of length 3 cells. How many cells do
a honeycomb with a “side” of 10 cells have ?

Solution: The honeycomb described in th eproblem can be constructed as follows. We
start with one cell, and around it we build a layer of 6 cells (creating a honecomb of side
2 cells). Then we add another (second) layer with 6+6 cells: 6 are added “between” any
two adjacent cells from the previous layer, and 6 are added “on top” of each (corner) cell
from the previous layer. Then we add the third layer of cells: one cell “between” any two
adjacent cells and 6 cells “on top” of corner cells from the second layer. Thus the third
layer will have 12+6 cells. The fourth layer is added to it and it will 18+6 cells (one cell
“between” any two adjacent cells from the previous leyer and 6 cells “on top” of corner
cells from the prevoius layer). The process continues until we set nineth layer of cells with
48+6 cells. Then the total number of cells will be

1 + 6 + 12 + 18 + 24 + 30 + 36 + 42 + 48 + 54 =
10 · 55

2
= 271.
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Problem 3: Three boys, Adam, Bill and Charlie, ate 14 donuts. Adam ate twice less
than Charlie and Bill ate more than Adam but less than Charlie. How many donuts did
each of the boys eat?

Solution: Let a, b, c be the numbers of donats eaten by Adam, Bill and Charlie, respec-
tively. Then a, b, c are non-negative integers satisfying the following conditions:

• a + b + c = 14,
• 2a = c, and
• a < b < c.

Consequently, also b = 14− 3a.
If a ≥ 5 then 14− 3a < 0 so these values of a are not possible. If a ≤ 2 then c ≤ 4 and

it impossible to choose b < c satisfying a + b + c = 14.
If a = 4 then 14− 3a = 2 < a, so this value of a is not possible.
If a = 3 then a < 14− 3a = 5 < 6 = 2a = c. Thus a = 3, b = 5 and c = 6 are the only

integers saisfying our conditions. Consequently, Adam ate 3 donuts, Bill ate 5 donuts and
Charlie ate 6 donuts.

Problem 4: In the Euclidean plane somebody marked 100 horizontal lines and 2019
vertical lines. How many rectangles with sides included in these lines are there ?

Solution: Each such rectangle is determined by choosing two verital lines and two hor-
izontal line. The first choice can be made in 2019·2018

2
ways and the second selection in

100·99
2

ways. Since these to selections are independent, the total number of the resulting
rectangles is

2019 · 2018

2
· 100 · 99

2
= 2019 · 1009 · 50 · 99 = 10083996450.
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Problem 5: A triangle ABC has area 10 in2. A point P lies on the side AC and satisfies

|AP |
|PC|

= 4.

Find the area of the triangle BCP .

Solution: Let h be the height of the triangle ABC perpendicular to base AC. Then h
is also the height of the triangle BCP perpendicular to base PC. Since

|AC| = |AP |+ |PC| = 4 · |PC|+ |PC| = 5 · |PC|
we have

10 = Area(4ABC) =
1

2
· h · |AC| = 1

2
· h · 5 · |PC| = 5 · Area(4BCP ).

Hence, Area(4BCP ) = 2 in2.

Problem 6: You try to build a rectangular cuboid (a.k.a. rectangular parallelepiped)
using 105 unit cubes stuck together so that neighboring cubes touch each other with full
facets. How many non-congruent cuboids can you construct this way?

Solution: First note that 105 = 3 ·5 ·7. Therefore possible dimensions of our rectangular
cuboids are

• 1× 1× 105,
• 1× 3× 35,
• 1× 5× 21,
• 1× 7× 15, and
• 3× 5× 7.

Thus there are 5 non-congruent cuboids satisfying our demands.
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Problem 7: Show that for any positive reals x, y, z we have

xxyyzz ≥ (xyz)a,

where a is the arithmetic mean of x, y, z.

Solution: Without loss of generality x ≥ y ≥ z. We have

xxyy ≥ xyyx,

because that is equivalent to
(x/y)x ≥ (x/y)y

which is obviously true. Similarly,

yyzz ≥ yzzy and zzxx ≥ zxxz.

Multiplying these three together we get

(xxyyzz)x ≥ xy+zyz+xzx+y.

Multiplying both sides by xxyyzz gives

(xxyyzz)3 ≥ (xyz)3a.

Taking cube roots gives the required result.

Problem 8. Suppose that p, q are distinct prime numbers and m,n are natural numbers
and

mp ≡ 1 mod q and nq ≡ 1 mod p.

Show that mp + nq > pq.

Solution: By our assumptions we may find natural numbers x and y such that

mp = qx + 1 and nq = py + 1.

Then

m + y =
qx + 1

p
+

nq − 1

p
=

q(x + n)

p
.

Since p and q are distinct prime numbers and m + y is a natural number, p must divide

x + n. Consequently 1 ≤ x+n
p

and hence q ≤ q(x+n)
p

= m + y. Therefore

mp + nq = mp + py + 1 = p(m + y) + 1 ≥ pq + 1 > pq,

as desired.
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Problem 9: Find all integer solutions of the equation

(♥) x3 + 2y3 + 4z3 = 6xyz.

Solution: We note that if a triple (x, y, z) satisfies the equation (♥), then also the triple
(x/2, y/2, z/2) satisfies it, and also (x/4, y/4, z/4) is a solution to (♥) etc. Thus

(∗)1 if a triple (x, y, z) satisfies the equation (♥) and n ∈ N, then also the triple
(x/2n, y/2n, z/2n) satisfies (♥).

Now, suppose (x, y, z) is an integer solution of the equation (♥). Then x3 = 6xyz− 2y3−
4z3, so x is an even number. Similarly y and z must be even. By (∗)1, (x/2, y/2, z/2) is
an integer solution of the equation (♥). Consequently,

(∗)2 if (x, y, z) an integer solution of the equation (♥) and n ∈ N, then also the triple
(x/2n, y/2n, z/2n) an integer solution of the equation (♥).

It follows from (∗)2 that if (x, y, z) an integer solution of the equation (♥), then x = 0,
y = 0 and z = 0.

We easily verify that x = y = z = 0 satisfy (♥), so this is the only integer solution of
this equation.

Problem 10: Show that for each natural number n we can find an n–digit integer with
all its digits odd which is divisible by 5n.

Solution: We show this claim by induction on n. Let Φ(n) be the assertion that

there exists an n–digit integer with all its digits odd which is divisible by 5n.

We will verify that the formula Φ(n) satisfies the assumptions of the Theorem on Math-
ematical Induction.

Basic Step: For n = 1 the number 5 witnesses that Φ(1) is true.
Inductive Step: Suppose that Φ(n) holds true and let an n–digit number N witness this.
Consider the five n + 1 digit numbers

10n + N, 3 · 10n + N, 5 · 10n + N, 7 · 10n + N, and 9 · 10n + N.

We may take out the common factor 5n to get the five numbers

k, k + 2n+1, k + 2 · 2n+1, k + 3 · 2n+1, and k + 4 · 2n+1,

for some k. Since 2n+1 is relatively prime to 5, the five numbers are all incongruent
modulo 5 and so one must be a multiple of 5. Consequently, the corresponding number
x · 10n + N will winess Φ(n + 1).

Thus Φ satisfies the assumptions of the Theorem on Mathematical Induction and therefore
for every n the assertion Φ(n) holds true, as desired.


