Problem ◊–2
Due in DSC 235 by 12 noon, Friday, September 22, 2017

Definition: A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is periodic if there is a positive real number \(t \) such that
\[f(x) = f(x + t) \quad \text{for all } x \in \mathbb{R}. \]

Problem A: Suppose that a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is nonconstant, periodic and has at least one continuity point. Prove that \(f \) has a smallest positive period, the so called fundamental period.

Problem B: Suppose that \(f : \mathbb{R} \rightarrow \mathbb{R} \) is continuous and periodic with period \(t > 0 \). Prove that there is \(x_0 \in \mathbb{R} \) such that
\[f\left(x_0 + \frac{t}{2}\right) = f(x_0). \]

Rules:
- The competition is open to all undergraduate UNO students.
- Please submit your solutions to Andrzej Roslanowski in DSC 235 or to his mailbox. (Needless to say, they should be be written clearly and legibly.)
- The winners will be determined each semester based on the number of correct solutions submitted.
- Problems will be posted by Friday 5pm and the solutions are due by the following Friday 12 noon.

Prizes:
- Winners will received books published by the American Mathematical Society. The titles actually awarded will be selected in cooperation with the awardees.
- In Summer 2018, there is a research opportunity possibly that could lead to an Erdős Number (3 or possibly 2). Strong performance in POW is one of the crucial prerequisites.