Pinching an Impulse: Solution

Pick any constant m, unbounded sequence m_1, m_2, m_3, \cdots and three sequences (i) a_1, a_2, a_3, \cdots ; (ii) b_1, b_2, b_2, \cdots ; and (iii) c_1, c_2, c_3, \cdots satisfying $0 < a_n < b_n < c_n < 1$ and $\lim_{n \to \infty} a_n = 1$. For example we could pick

$$m = 0$$
, $m_n = n$, $a_n = 1 - \frac{1}{n+1}$, $b_n = 1 - \frac{1}{n+2}$, $c_n = 1 - \frac{1}{n+3}$.

Then define $f_n(x)$ to be the piecewise-linear function whose graph consists of the line segments joining the points (0, m), (a_n, m) , (b_n, m_n) , (c_n, m) , (1, m):

Since $f_n(1) = m$ for all n, so too does f(1) = m. For any x < 1 in the domain, eventually $a_n > x$ (or in other words, the triangle passes to the right of x), after which point $f_n(x) = m$, and thus f(x) = m there too. Thus, f is the constant function identically equal to m, which is bounded.

This phenomenon shows up in some places.

Consider the continuity of $f(x, y) = 2x^2y/(x^4 + y^2)$ at (0, 0). Approaching the origin along any line, the limit is 0. But approaching the origin along one of the parabolas $y = \pm x^2$, the limit is ± 1 . This, and riffs on it, are common counterexamples given in introductory calculus classes.

Restricting the function f to a circle of radius r centered at the origin, the graph shows bumps on either side which, as $r \to 0$, get squeezed towards the East and West poles of the circle, never really reaching them.

Another illustration of this is seen in **Gibbs phenomenon**. Almost any "nice" function is expressible as an infinite sum of trigonometric functions, called a Fourier series. The partial sums of a Fourier series converge, yet there are "ringing artifacts" that are squeezed towards jump discontinuities.

