
Good Fibrations: Solution

Every neighboring pair of dodecahedra extends to a unique ring of ten do-
decahedra, and every ring extends to a unique bundle of a dozen rings:

pair → ring → bundle

This is not a one-to-one correspondence, though: each bundle arises from any
of its twelve rings, and similarly each ring arises from any of its ten neigh-
boring pairs of dodecahedra.

To construct a neighboring pair of dodecahedra within a given ring, we can
first pick one of the ten dodecahedra of the ring, then either of its two neigh-
bors, but notice this overcounts by a factor of two since we can pick the two
dodecahedra of a pair in two different orders - which is picked 1st vs 2nd.

Thus, there are 12× 10 = 120 neighboring pairs per bundle.

To construct a neighboring pair in general, we can pick any of the 120 do-
decahedra in the picture, then pick any of its 12 neighbors (a dodecahedron
has twelve faces), and divide by 2 for the same reason as before.

Thus, there are 120× 12/2 = 720 neighboring pairs in total.

Since there are 720 pairs total, and 120 pairs per bundle (and no pair shared
between bundles), there must be 720/120 = 6 bundles.

This counting argument also works in the game SET.



In SET, each of the cards has a picture with four features (color, shape,
number, shading), each with three possible variations, for a total of 34 = 81:

• color: red, purple, green

• shape: oval, squiggly, diamond

• number: one, two, three

• shading: blank, solid, hatching

A “SET” is three cards in which each feature either has the same variation
on each card or all three variations. We can write down the equation

(SETs) · (pairs per SET) = (pairs) · (SETS per pair)

There are
(
3
2

)
= 3 pairs of cards per SET, and there is 1 SET per pair (in

any SET, the features of the third card are determined by those of the first

two). And the total number of pairs is
(
34

2

)
, so the number of SETs is(

34

2

)
/

(
3

2

)
= 1080.

For dodecahedral bundles we used the same reasoning, with adjacent pairs
of dodecahedra instead of pairs of cards and bundles of rings instead of SETs!

SET is an example of a Steiner system. A system S(t, k, n) is a collection
of k-subsets (called blocks) of an n-set for which every t-subset is contained
within exactly one block. By our counting argument, there are

(
n−`
t−`
)
/
(
k−`
t−`
)

blocks containing any `-subset. SET is a S(2, 3, 34) and ` = 0 counts SETs.

There are infinitely-many lines (not necessarily through the origin) in Eu-
clidean space. If we consider 4D space, and instead of using real numbers for
coordinates use the integers mod 3, then the vectors and lines respectively
correspond to cards and SETs from the game SET!

This problem’s title and bundle picture are taken from a post of the same
name on the blog “Complex Projective 4-Space.”



The dodecahedral bundles are discrete versions of the Hopf fibration.

Visualizing the fibration requires stereographic projection. Usually, we project
a circle onto a line, or a sphere onto a plane, but for this, we need to project
the “three-sphere” sitting in 4D down to 3D Euclidean space.

Just as a Möbius band is a bunch of line segments arranged in a circle, or
a Klein bottle is a bunch of circles arranged in a circle, the three-sphere is,
somewhat miraculously, a bunch of circles arranged in the shape of a (2D)
sphere! When stereographically projected, that means all of 3D space is filled
in with circles, with one “infinitely large” circle (i.e. a line).

The circles can be bunched together into wreaths (solid Dupin cyclides, to
be exact), then those wreathes turned into rings of dodecahedra.

In 4D space, these dodecahedra are the cellular panels of the “120-cell” poly-
tope. The centers of the dodecehdra form the dual polytope, the “600-cell,”
which is also the group of unit-length icosians in the quaternions. Because
of how quaternions model 3D rotations, every antipodal pair of icosians cor-
responds to one of the 60 rotational symmetries of an icosahedron!


