Equational Sudoku: Solution

First, we want to figure out which of $0, 1, \star, \mathbb{C}$ that $\star \times \mathbb{C}$ is. We will set it equal to elements and multiply by \star^{-1} or \mathbb{C}^{-1} to get contradictions:

- $\star \times \mathbb{C} = 0 \implies \star, \mathbb{C} = 0$
- $\bullet \ \star \times \ \mathbb{G} \ = \star \quad \Rightarrow \quad \mathbb{G} \ = 1$
- $\bullet \ \star \times \ \mathfrak{C} \ = \ \mathfrak{C} \ \ \Rightarrow \ \ \star = 1$

These are all contradictions because $0, 1, \star, \mathbb{C}$ are all distinct. This leaves the only possibility $\star \times \mathbb{C} = 1$, which also means $\mathbb{C} \times \star = 1$. In other words, \star and \mathbb{C} are each other's multiplicative inverses, $\star^{-1} = \mathbb{C}$ and $\mathbb{C}^{-1} = \star$.

Second, we do the same for $\star \times \star$, multiplying by $\star^{-1} = \mathfrak{C}$:

- $\bullet \ \star \times \star = 0 \quad \Rightarrow \quad \star = 0$
- $\bullet \ \star \times \star = 1 \quad \Rightarrow \quad \star = \mathbb{(}$
- $\bullet \ \star \times \star = \star \quad \Rightarrow \quad \star = 1$

This leaves only $\star \times \star = \mathbb{Q}$. Symmetrically, we must also have $\mathbb{Q} \times \mathbb{Q} = \star$.

Third, we may do the same for $1 + \star$:

- $1 + \star = 1 \implies \star = 0 \pmod{-1}$
- $1 + \star = \star \Rightarrow 1 = 0 \pmod{-\star}$
- $1 + \star = 0 \quad \Rightarrow \quad \star = \mathbb{C}$

From $1 + \star = 0$ we may multiply by \mathfrak{C} to get $\mathfrak{C} + 1 = 0$. Setting $1 + \star = \mathfrak{C} + 1$, we may add -1 to get $\star = \mathfrak{C}$, a contradiction. This leaves only $1 + \star = \mathfrak{C}$, and symmetrically $1 + \mathfrak{C} = \star$. Not much left to go!

Multiplying $1 + \star = \mathfrak{C}$ by \star (or $1 + \mathfrak{C} = \star$ by \mathfrak{C}) gives $\star + \mathfrak{C} = 1$.

Lastly, multiplying the element $\bigcirc := 1 + \star + \emptyset$ by either of \star or \emptyset leaves it unchanged - thus, we have $(1 - \star)\bigcirc = (1 - \emptyset)\bigcirc = 0$, and multiplying by $(1 - \star)^{-1}$ or $(1 - \emptyset)^{-1}$ (which is possible because \star, \emptyset , 1 are distinct) yields $\bigcirc = 0$. Replacing $\star + \emptyset$ in $\bigcirc = 0$ with 1, this equation is now 1 + 1 = 0.

Our completed table now reads

+	0	1	*	(×	0	1	*	$\langle\!\!\langle$
0	0	1	*	(0	0	0	0	0
1	1	0	$\langle\!\langle$	*	1	0	1	\star	$\langle\!\langle$
*	*	$\langle\!\langle$	0	1	*	0	*	(1
(C	*	1	0	$\langle\!\!\langle$	0	(1	\star

What this problem called a "number system" in math is known as a *field*, and when it has a finite number of elements it is a **finite field**.

For comparison, consider the **integers mod** n, denoted \mathbb{Z}_n or $\mathbb{Z}/n\mathbb{Z}$. This effectively consists of $\{0, 1 \cdots, n-1\}$ with "clock arithmetic," where the addition and multiplication operations "wrap around," for instance 11+2 = 1 in \mathbb{Z}_{12} just as 2 hours after 11:00 is 1:00. If n is composite, then \mathbb{Z}_n has nonzero elements without multiplicative inverses (anything not relatively prime to n), but if p is prime then \mathbb{Z}_p is a finite field.

There is essentially only one finite field of size q for prime powers q, and none for other cardinalities, denoted \mathbb{F}_q in math or GF(q) in computer science ("Galois field"). For primes p, the finite field \mathbb{F}_p is just \mathbb{Z}_p . But for higher prime powers q, we construct \mathbb{F}_q by adding "imaginary" elements to \mathbb{F}_p just as how we construct \mathbb{C} from \mathbb{R} . For instance, we may construct \mathbb{F}_4 from the problem by adjoining a cube root of unity \mathbb{C} to $\mathbb{F}_2 = \{0, 1\}$.

Finite fields are indispensable to modern cryptography and error correction.