
Cyclic Sieving: Solution

Often, combinatorial formulas counting certain things with set-theoretic de-
scriptions generalize to other formulas (their q-analogs) which count similar
things with linear-algebra interpretations. (Arguably it would be more truth-
ful to say projective-geometry interpretations.) The analogs use the tradi-
tional choice of variable q. Here, linear algebra is not done over the fields R
or C, but rather over a finite field with q scalars denoted Fq.

The simplest example: n counts how many elements the set {1, · · · , n} has,
while [n] := qn−1+· · ·+q+1 counts how many 1D subspaces the n-dimensional

vector space Fn
q has. More generally, the binomial coefficient

(
n
k

)
= n(n−1)···

k(k−1)···
(with k terms in the numerator and denominator) counts how many size-k

subsets there are of {1, · · · , n}, and its q-analog [ nk ] = [n][n−1]···
[k][k−1]··· counts how

many k-dimensional subspaces there are of the vector space Fn
q .

Plugging q = 1 into q-analogs typically gives the original combinatorial for-
mula. This suggests a “field with one element” is missing in field theory,
however changing the definition of a “field” to allow only one element fails to



reproduce the combinatorial formulas. Mathematicians have tried to remedy
this by abstracting every possibly relevant definition until they can finally
actually define F1, but this saga has yet to reach a conclusion.

The cyclic sieving phenomenon (CSP) occurs when a combinatorial for-
mula counts certain things and then plugging a complex nth root of unity
into the q-analog counts how many of those things have cyclic symmetry.

For instance, the formula
(
n
k

)
counts how many ways there are to color k

vertices of a polygon one color and the other n − k vertices another (like a
necklace with beads), and if d is a factor of n then plugging a (primitive) dth
root of unity for q into the analog [ nk ] tells us how many of those colorings
are unchanged by rotating the polygon by 1/dth of a full turn.

In our problem of polygon triangulations, however, we are not counting the
“fixed points” of rotations (the configurations with cyclic symmetry) but
rather the “orbits,” or in other words we are grouping the triangulations
according to rotations and then counting how many groups (orbits) we get.
But we can count orbits using fixed points according to Burnside’s Lemma.

(If we did the same for coloring vertices of a polygon, grouping the colorings
according to rotations, necklace polynomials count the orbits.)

The total number of triangulations of a polygon with n vertices, where ro-
tations are not counted as equivalent, is Cn−2 where the Catalan numbers
are given by the formula Cn = 1

n+1

(
2n
n

)
. The q-analog 1

[n+1] [ 2nn ] exhibits CSP,

so plugging a complex (primitive) dth root of unity for q in (where d is a
factor of n) yields how many configurations are unchanged by 1/dth of a full
turn, which Burnside’s Lemma tells us how to count orbits with.


