
Ensemble Cast: Solution

The characteristic polynomial of the symmetric matrix H is
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Thus, the (x, y, z) corresponding to a given (λ1, λ2) satisfy{
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This is a circle in xyz-space. The density ρ of H at every point on it is
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Thus, the density ρ is constant on the circle associated to a given (λ1, λ2).

The circumference of the circle is 2π
√
y2 + z2 = π|λ2−λ1|. Since ρ is constant

on the circle, our answer is simply ρ times this circumference:
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This is a Gaussian Orthogonal Ensemble (GOE). Using complex Hermitian
matrices instead of real symmetric ones gives the Gaussian Unitary En-
semble (GUE), proposed by theoretical physicist Eugene Wigner as a way
to model the spectral theory (energy levels) of heavy atomic nuclei.

Notice ρ = 0 on the line λ1 = λ2. As a result, (λ1, λ2) exhibits repulsion:
the eigenvalues are not independent, they prefer to be apart from each other.


