Bipolarity: Solution

Law of Cosines says $2^{2}=d_{1}^{2}+d_{2}^{2}-2 d_{1} d_{2} \cos \sigma$.
Law of Sines says $\frac{\sin \sigma}{2}=\frac{\left(y / d_{1}\right)}{d_{2}}=\frac{\left(y / d_{2}\right)}{d_{1}}$.
Therefore $d_{1} d_{2} \cos \sigma=r^{2}-1$ and $d_{1} d_{2} \sin \sigma=2 y$. Plus, we have

$$
\left\{\begin{array} { l }
{ d _ { 1 } ^ { 2 } = (x + 1) ^ { 2 } + y ^ { 2 } } \\
{ d _ { 2 } ^ { 2 } = (x - 1) ^ { 2 } + y ^ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
d_{1}^{2}+d_{2}^{2}=2\left(r^{2}+1\right) \\
d_{1}^{2}-d_{2}^{2}=4 x
\end{array}\right.\right.
$$

Now compute $f(\tau) / g(\sigma)$ as follows:

$$
\begin{aligned}
& \frac{\cosh \tau}{\cos \sigma}=\frac{\left(\frac{d_{1}}{d_{2}}+\frac{d_{2}}{d_{1}}\right)}{2 \cos \sigma}=\frac{d_{1}^{2}+d_{2}^{2}}{2 d_{1} d_{2} \cos \sigma}=\frac{r^{2}+1}{r^{2}-1}, \\
& \frac{\sinh \tau}{\cos \sigma}=\frac{\left(\frac{d_{1}}{d_{2}}-\frac{d_{2}}{d_{1}}\right)}{2 \cos \sigma}=\frac{d_{1}^{2}-d_{2}^{2}}{2 d_{1} d_{2} \cos \sigma}=\frac{2 x}{r^{2}-1}, \\
& \frac{\cosh \tau}{\sin \sigma}=\frac{\left(\frac{d_{1}}{d_{2}}+\frac{d_{2}}{d_{1}}\right)}{2 \sin \sigma}=\frac{d_{1}^{2}+d_{2}^{2}}{2 d_{1} d_{2} \sin \sigma}=\frac{r^{2}+1}{2 y}, \\
& \frac{\sinh \tau}{\sin \sigma}=\frac{\left(\frac{d_{1}}{d_{2}}-\frac{d_{2}}{d_{1}}\right)}{2 \sin \sigma}=\frac{d_{1}^{2}-d_{2}^{2}}{2 d_{1} d_{2} \sin \sigma}=\frac{x}{y} .
\end{aligned}
$$

We also get $\tan \sigma=\frac{2 y}{r^{2}-1}$ and $\tanh \tau=\frac{2 x}{r^{2}+1}$ from these. Now

$$
\begin{aligned}
& \frac{\cosh \tau}{\sinh \tau}-\frac{\cos \sigma}{\sinh \tau}=\frac{r^{2}+1}{2 x}-\frac{r^{2}-1}{2 x}=\frac{1}{x} \\
& \frac{\cosh \tau}{\sin \sigma}-\frac{\cos \sigma}{\sin \sigma}=\frac{r^{2}+1}{2 y}-\frac{r^{2}-1}{2 y}=\frac{1}{y}
\end{aligned}
$$

Therefore, $(x, y)=\left(\frac{\sinh \tau}{\cosh \tau-\cos \sigma}, \frac{\sin \sigma}{\cosh \tau-\cos \sigma}\right)$.

This gives rise to bipolar coordinates as follows.
First complete the square from the formulas for $\tan \sigma$ and $\tanh \tau$:

$$
\begin{array}{c|c}
\tan \sigma=\frac{2 y}{r^{2}-1} & \tanh \tau=\frac{2 x}{r^{2}+1} \\
x^{2}+y^{2}-2(\cot \sigma) y=1 & x^{2}-2(\operatorname{coth} \tau) x+y^{2}=-1 \\
x^{2}+(y-\cot \sigma)^{2}=\csc ^{2} \sigma & (x-\operatorname{coth} \tau)^{2}+y^{2}=\operatorname{csch}^{2} \tau
\end{array}
$$

The circles of constant σ (red) and constant ρ (blue) are below:

This is what we get when we stereographically project longitude and latitude coordinates on a sphere from a point on its equator to a plane!

These are circles of Apollonius. The red and blue circles are orthogonal families of circles, and every blue circle is the locus of points with a constant ratio of distances to the two foci (aka poles), namely $d_{1} / d_{2}=\exp \tau$.

