
Problem of the week #5: Background

Points with integer coordinates form the grid Z2 within the plane R2.

Placing a circle of diameter 1 centered at each grid point results in
a square packing. The most efficient packing, however, is hexagonal.

Tangentially, the so-called kissing number problem asks how many
circles can lie around one of the same size. The answer is that the
kissing number is 6, arising from a hexagonal arrangement of adjacent-
tangent circles. The problem generalizes to higher dimensions.

Similarly, a cubic arrangement of spheres is inefficient. Six spheres lie
tangent to any given one, but there is extra space between them.

Taking eight sphere centers to be the vertices of a cube, there is not
enough room to fit an extra sphere in the middle: the diagonal through
a cube is

√
3 which cannot fit two radii and one diameter (i.e.

√
3 < 2).



To understand this arrangement in four dimensions, first notice how
in three dimensions a 2 × 2 × 2 cube centered at (0, 0, 0) has three
2 × 2 square cross-sections corresponding to x coordinates −1, 0,+1;
between each adjacent pair of 1× 1 squares there is a 1× 1× 1 cube.

Generalizing to four dimensions, points are represented by (w, x, y, z),
and a 2 × 2 × 2 × 2 tesseract has three 2 × 2 × 2 cube cross-sections
corresponding to w coordinates −1, 0, 1; between each adjacent pair of
1× 1× 1 cubes there is a 1× 1× 1× 1 tesseract.

The diagonal between opposite vertices in a unit tesseract is
√

4 = 2,
since the distance formula in two and three dimensions generalizes to
four dimensions. This is just enough for two radii and a diameter if
we pack hyperspheres with diameter 1 at all the points with integer
coordinates (the grid Z4 within R4), therefore we can snugly fit a hy-
persphere within all sixteen unit tesseracts.

These sixteen hyperspheres centered at 1
2(±1,±1,±1,±1), plus the

eight hyperspheres centered at the permutations of (±1, 0, 0, 0), are
adjacent-tangent like the six circles of the 2D hexagonal packing.



Just as R2 has polygons and R3 has polyhedra, R4 has polychora, and
in general, Rn has polytopes. The centers of these 24 hyperspheres
form the vertices of a polychoron called the 24-cell.

Edges are between centers of tangent hyperspheres, faces are between
coplanar centers of mutually tangent hyperspheres, and so on. Two
hyperspheres are tangent precisely when their centers are 1 unit apart.

To understand their arrangement, consider the five 3D cross-sections
containing the hypersphere centers with w coordinates−1,−1

2 , 0,+
1
2 ,+1:

The distance between any two points is one of
√

1,
√

2,
√

3,
√

4.

The six vertices in the w = 0 slice are not connected to each other,
but are connected to the w = ±1

2 slices on either side - the top vertex
is connected to the top four vertices on each cube, the front vertex is
connected to the front four vertices on each cube, and so on.

Each edge of the two cubes is also an edge of the 24-cell, each ver-
tex of a cube is connected to the corresponding vertex of the other
cube, and the two isolated vertices in the w = ±1 slices are connected
to every vertex in their neighboring cube.

The square faces of the cube are not faces of the 24-cell. Any three
edges connecting three vertices bound a triangular face, for example
any pair of adjacent vertices in a cube (w = ±1

2) and the neighboring
isolated vertex (w = ±1) form a face.



While the cubes’ square faces are not faces of the 24-cell, their vertices
are connected to one vertex in a neighboring slice on either side forming
an octahedral cell, as pictured below. In the 24-cell, all faces are
triangular and all cells are octahedral.

The 24-cell is perfectly symmetrical: any of its vertices, edges, faces or
cells correspond to any other with respect to a rotational symmetry (in
physics this is known as isotropy). So, for instance, since the leftmost
vertex in the w = −1 slice is adjacent to 8 vertices (which are all in
the w = −1

2 slice), every vertex is connected to 8 others.

Or, since the leftmost vertex is incident to 6 octahedra (one for each
square face in the w = −1

2 slice), the same is true of every vertex, and
since there are 24 vertices and 6 per octahedron, there are 6 ·24/6 = 24
octahedral cells. This logic lets us fill in the configuration matrix:

V E F C
V 24 2 3 6
E 8 96 3 12
F 12 3 96 8
C 6 3 2 24

The diagonal entries say how many vertices, edges, faces and cells there
are. The off-diagonal entries describe incidence, for instance the V row
and C column says there are 6 vertices incident to every cell.

Exercise. Verify the configuration matrix above. Remember to use
symmetry! Extra: compute the matrix for the five Platonic solids.



The configuration matrix itself has symmetry: a 180◦ rotation of the
numbers results in the same matrix. This reflects the geometric fact
the 24-cell is self-dual. In 3D, the dual of a polyhedron is constructed
by drawing edges between midpoints of faces. The name is justified by
the fact the dual of the dual is the original polyhedron (shrunk).

Of the Platonic solids, the tetrahedron is self-dual, the cube/octahedron
are dual, and the dodecahedron/icosahedron are dual. Beyond four
dimensions, the only analogues of Platonic solids are simplices (e.g.
tetrahedra), and hypercubes/hyperoctahedra. In four dimensions, each
of the five Platonic solids has an analogue, plus the 24-cell as a sixth
polychoron, making it the most exceptional regular polytope of all.

Besides the vertices, edges, faces and cells, there are other, more subtle
features hidden in the 24-cell. For example, just as the cube has two
inscribed tetrahedra, the 24-cell has three inscribed hyperoctahedra.

Also, the aforementioned hexagonal circle packing occurs in 2D cross-
sections of the 24-cell; can you find six vertices in it, connected by
edges, which are the same angle apart as the vertices of a hexagon?


