
Problem of the week #4: Solution

The number of trailing zeros in a number m, represented in binary,
equals the number of times it is divisible by 2, or equivalently the
power of 2 in its prime factorization.

Let v2(m) be the power of 2 in m’s prime factorization. In number
theory this is called the 2-adic valuation. Much like a logarithm, it
satisfies the product rule v2(ab) = v2(a) + v2(b). Therefore the valua-
tion of m = 112233 · · · 20492049 is equal to the sum

1v2(1) + 2v2(2) + 3v2(3) + · · ·+ 2049v2(2049)

We may tally the valuations v2(k) for k = 1, · · · , 16 as in the below
table on the left. To multiply k times v2(k) we may replace each dot
with a k and insert plus signs, as on the right:

1 ◦ ◦ ◦ ◦
2 • ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 • • ◦ ◦
5 ◦ ◦ ◦ ◦
6 • ◦ ◦ ◦
7 ◦ ◦ ◦ ◦
8 • • • ◦
9 ◦ ◦ ◦ ◦
10 • ◦ ◦ ◦
11 ◦ ◦ ◦ ◦
12 • • ◦ ◦
13 ◦ ◦ ◦ ◦
14 • ◦ ◦ ◦
15 ◦ ◦ ◦ ◦
16 • • • •

=⇒

2

4 + 4

6

8 + 8 + 8

10

12 + 12

14

16 + 16 + 16 + 16

Evaluating n = v2(m), then, amounts to adding up all the numbers
scattered above on the right. Instead of grouping the terms in rows,
giving 2 + 4 · 2 + 6 + 8 · 3 + 10 + 12 · 2 + 14 + 16 · 4 + · · · , we will group
the terms in columns because the column sums have a formula.



Grouping the summands according to columns on the last page,

(2 + 4 + 6 + 8 + · · ·+ 2048)
(4 + 8 + 12 + · · ·+ 2048)

(8 + 16 + · · ·+ 2048)
(16 + · · ·+ 2048)

...
+ (2048)
= n

From here we may factor out common factors:

2(1 + 2 + 3 + · · ·+ 1024)
4(1 + 2 + 3 + · · ·+ 512)
8(1 + 2 + 3 + · · ·+ 256)

16(1 + 2 + 3 + · · ·+ 128)
...

+ 2048(1)
= n

Note 2048 is a power of 2, by hand calculation:

e 2e

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048

And so it is revealed that 2049 is more than a Blade Runner reference;
it is closer to a perfect power of 2 than 2019 happens to be.



At this point we need to use the following:

Lemma. The nth triangular number is given by the formula

Tn := 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

They count how many balls are in a triangular stack (by row):

(Proof 1.) Tn counts how many subsets {1, 2, 3, · · · , n + 1} has of the
form {a, b}. If we pick a first then b, we have n + 1 choices for a then
n remaining choices for b, but then we must divide by 2 to undo our
overcounting since {a, b} = {b, a}; this gives n(n+ 1)/2. Or, make the
following arrangement and count by rows:

{1, 2}
{1, 3}, {2, 3}

{1, 4}, {2, 4}, {3, 4}
{1, 5}, {2, 5}, {3, 5}, {4, 5}

{1, 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6}
{1, 7}, {2, 7}, {3, 7}, {4, 7}, {5, 7}, {6, 7}

...

(Proof 2.) There is an oft-told story which says that when a young
Carl Friedrich Gauss (considered one of the greatest mathematicians
of all time) was a schoolboy, his teacher gave the students busywork
by asking them to add the numbers 1 through 100, which Gauss solved
immediately with the trick of adding the sum to itself in reverse order.



S = 1 + 2 + · · · + 99 + 100
+S = 100 + 99 + · · · + 2 + 1
2S = 101 + 101 + · · · + 101 + 101

Summing gives 2S = 100(101). This generalizes to 2Tn = n(n + 1),
and may be visualized by combining two triangular stacks:

T4 + T4 = 4× 5

Applying the lemma to our aforementioned column sum for n,

n = 2
(
1024·1025

2

)
+ 4

(
512·513

2

)
+ 8

(
256·257

2

)
+ · · ·+ 2048

(
1·2
2

)
= 1024(1025 + 513 + 257 + · · ·+ 2)

For this we may employ yet another formula,

Lemma. The geometric sum formula for the kth partial sum of a
geometric sequence with first term 1 and common ratio r is:

S = 1 + r + r2 + · · ·+ rk−1 =
rk − 1

r − 1
.

(Proof.) Compare S with its multiple rS:

S = 1 + r + r2 + · · · +rk−1

rS = r + r2 + · · · +rk−1 + rk

Subtracting gives rS − S = rk − 1. Applying with r = 2 and k = 11,

n = 210
(
(210 + 1) + (29 + 1) + · · ·+ (20 + 1)

)
= 210

(
(210 + 29 + · · ·+ 20) + (1 + 1 + · · ·+ 1)

)
= 210

(
211 − 1

2− 1
+ 11

)
= 210(211 + 23 + 2) = 221 + 213 + 211

expressed in binary is 10000000101000000000002.


