
Problem of the week #1: Solutions

S(t) =

∫ t

0

dτ

cosh τ
, T (s) =

∫ s

0

dσ

cosσ
.

The function S(t) is called the Gudermannian function and T (s)
the inverse Gudermannian function. Writing S = S(T ) or T = T (S),
they satisfy the following three equivalent identities:

(1) tanS = sinhT
(2) sinS = tanhT
(3) cosS = sechT

For example, (1) says tanS(t) = sinh t and tan s = sinhT (s).

One identity may be converted into another by applying transforma-
tions, using circular Pythagorean identities on the left and hyperbolic
Pythagorean identities on the right. Applying

√
1− x2 converts be-

tween (2) and (3); applying x/
√

1 + x2 converts from (1) to (2) and its
inverse x/

√
1− x2 from (2) to (1); applying 1/

√
1 + x2 converts from

(1) to (3) and its inverse
√

1− x2/x from (3) to (1). When convert-
ing from (3) it suffices to assume S, T ≥ 0 since they are odd functions.

There is also a fourth equivalent half-angle identity

(4) tan(S/2) = tanh(T/2).

This follows from all (hence any) of (1),(2),(3) using either version of
tan and tanh’s half-angle formulas. For example,

tan
S

2
=

sinS

1 + cosS
=

tanhT

1 + sechT
=

sinhT

coshT + 1
= tanh

T

2
.

Conversely, (4) may be converted to (1) by applying 2x/(1 − x2), to
(2) by applying 2x/(1 + x2), and to (3) by applying (1− x2)/(1 + x2);
therefore all of the identities (1),(2),(3),(4) are equivalent to each other.

To show S(t) and T (s) are inverse functions, it suffices to establish
any of the four identities for S(t) and t and any other one of the four
for s and T (s). For example, if evaluating S(t) yields (1) and evalu-
ating T (s) yields (2), then (1) implies (2) so S(t) = sin−1(tanh t) and
T (s) = tanh−1(sin s) and hence they are inverse functions.



Cofunction substitutions. Evaluate the definite integral S(t) using
the substitution u = sinh(τ) (where du = cosh(τ)dτ) and the hyper-
bolic Pythagorean identity cosh2− sinh2 = 1:

S(t) =

∫ t

0

cosh(τ)dτ

1 + sinh2(τ)
=

∫ sinh t

0

du

1 + u2
= tan−1(sinh(t)).

Evaluate T (s) first by using the substitution u = sin(σ) (where du =
cos(σ)du) and the circular Pythagorean identity cos2 + sin2 = 1:

T (s) =

∫ s

0

cos(σ)dσ

1− sin2(σ)
=

∫ sin s

0

du

1− u2
= tanh−1(sin(s)).

Without directly knowing or recognizing the derivative of tanh−1, it is
also possible to use partial fraction decomposition:∫ sin s

0

1

2

(
1

1− u
+

1

1 + u

)
du =

1

2
ln

∣∣∣∣1 + sin s

1− sin s

∣∣∣∣ = tanh−1(sin(s)).

Exponential substitutions. Evaluate S(t) using the substitution
u = eτ (where du = eτdτ) and absorbing 2 into the integral by doubling
the interval over which it is taken (since cosh is an even function):

S(t) =

∫ t

0

2dτ

eτ + e−τ
=

∫ t

−t

eτdτ

e2τ + 1
=

∫ et

e−t

du

u2 + 1
= tan−1(et)−tan−1(e−t).

Apply tangent with difference-angle identity to get

tanS(t) =
et − e−t

1 + ete−t
= sinh(t).

We may instead have chosen to divide S by 2 in which case

S(t)

2
=

∫ t

0

dτ

eτ + e−τ
=

∫ et

1

du

u2 + 1
= tan−1(et)− tan−1(1).

Applying tangent (and multiplying by e−t/2/e−t/2) yields

tan
S(t)

2
=
et − 1

1 + et
=

(et/2 − e−t/2)/2
(et/2 + e−t/2)/2

= tanh(t/2).



Phasor substitutions. With functions of complex variables and path
integrals in the complex plane it is possible to evaluate T (s) using
the substitution u = eiσ (where du = ieiσdσ) alongside the formula
cos(σ) = (eiσ + e−iσ)/2. Absorbing 2 into the integral yields:

T (s) =

∫ s

0

2dσ

eiσ + e−iσ
=

∫ s

−s

eiσdσ

e2iσ + 1
=

1

i

∫ eis

e−is

du

u2 + 1

=
tan−1(eis)− tan−1(e−is)

i
.

Apply tangent with difference angle identity to get

tan iT (s) =
eis − e−is

1 + eise−is
= i sin s,

which is equivalent to tanhT (s) = sin s. Dividing by 2 instead,

T (s)

2
=

∫ s

0

dσ

eiσ + e−iσ
=

1

i

∫ eis

0

du

u2 + 1
=

tan−1(eis)− tan−1(1)

i

Applying tangent (and multiplying by e−is/2/e−is/2) yields

tan
iT (s)

2
=
eis − 1

1 + eis
=

eis/2 − eis/2

eis/2 + e−is/2
= tan(s/2).

Differentiation. Another idea: we may show (T ◦S)(t) = t by show-
ing both sides have the same derivative and agree at the initial value
(T ◦ S)(0) = 0. Differentiating with the chain rule and solving for S
indicates we need to show S(t) = ± cos−1(sech(t)). This, again, can
be argued by showing both sides are equal at t = 0 and have the same
derivative, though one needs to manage the continuity of the ± sign,
and then the same can be done to show (S ◦ T )(s) = s, or else ar-
gue S and T are one-to-one because they are monotonic because their
integrands are always positive on S and T ’s domains.


