Problem of the week #11: Solution

Solution 1. Suppose *n* is special and p_{j+1} is the largest prime not dividing *n*. Then it cannot share any factor with *n*, so *n* must be a factor of $p_{j+1}^2 - 1$, so in particular $n < p_{j+1}^2$.

On the other hand, n is divisible by the primes p_1, p_2, \dots, p_j so it is divisible by their product, hence their product satisfies $p_1p_2 \cdots p_j \leq n$.

Putting this together, $p_1 p_2 \cdots p_j < p_{j+1}^2$.

Check when this comparison first fails:

It will follow that $p_1p_2 \cdots p_k > p_{k+1}^2$ for all $p_{k+1} \ge 11$, since if it holds for one prime p_{k+1} on the right, then for the next prime p_{k+2} we have

$$p_1p_2\cdots p_kp_{k+1} > p_1p_2\cdots p_k \cdot 4 > p_{k+1}^2 \cdot 4 > p_{k+2}^2.$$

This uses Bertrand's postulate, which implies $p_{k+2} < 2p_{k+1}$.

If the largest prime not dividing n is $p_{k+1} = 7$, then n is a factor $7^2 - 1 = 48$. This would imply 5 is not a factor of n. Therefore n is a factor of one of $5^2 - 1 = 24$ or $3^2 - 1 = 8$ or $2^2 - 1 = 3$.

It turns out the special numbers are precisely the factors of 24:

$$n = 1, 2, 3, 4, 6, 8, 12, 24.$$

To check that one of these numbers n is special, it suffices to check n is a factor of $x^2 - 1$ for relatively prime values x < n. This is because if yis any value relatively prime to n and x is its remainder upon division by n then $y^2 - 1 = (x + kn)^2 - 1 = (x^2 - 1) + (2k + n)n$ has n as a factor if $x^2 - 1$ does. Manually check each listed number is special. **Solution 2**. The condition that *n* is a factor of $x^2 - 1$ for values *x* coprime to *n* may be restated as $x^2 \equiv 1 \mod n$ for all units *x* mod *n*.

In other words, the unit group $U(n) := (\mathbb{Z}/n\mathbb{Z})^{\times}$ has exponent 2.

The Chinese Remainder Theorem indicates U(n) is a direct product of $U(p^v)$ for all prime powers p^v in n's prime factorization. This group, for odd primes p, is cyclic of order $\phi(p^v) = p^{v-1}(p-1)$, hence contains elements order not 2 if p-1 > 2, so if n is special it cannot be divisible by any prime p > 3 and can only be divisible by 3 at most once. For p = 2, we have $U(2^w) \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{w-2}}$, which contains an element of order 4 if w - 2 > 1, so if n is special it can only be divisible by 2 at most 3 times. In conclusion, $n = 2^{v}3^{w}$ with $v \in \{0, 1, 2, 3\}$ and $w \in \{0, 1\}$.