Solution to Problems \$-6789

Problem A: Given q = x + yi + zj + wk, let $\bar{q} = x - yi - zj - wk$ be its conjugate. Verify that the Euclidean norm

$$||q|| := \sqrt{x^2 + y^2 + z^2 + w^2} = \sqrt{q\bar{q}}.$$

Proof. By straightforward computation.

Problem B: We identify \mathbb{R}^3 with the subspace of H spanned by $\{i, j, k\}$. Given two vectors v and v' in \mathbb{R}^3 , verify that

$$v\bar{v}' = \langle v, v' \rangle - v \times v',$$

where \langle,\rangle is the Euclidean inner product (or dot product) and \times is the cross product on \mathbb{R}^3 .

Proof. By straightforward computation.

Problem C: For each $q \in U$, we define $f_q : \mathbb{R}^3 \to \mathbb{R}^3$ with $f_q(v) = qv\bar{q}$. Verify that f_q is a linear map of \mathbb{R}^3 . What is f_q^{-1} ?

Proof. For the first part, simply use the definition of a linear map. For the second part, we have $f_q^{-1} = f_{\bar{q}}$.

,

Problem D: Given $q \in U$, show that the linear map f_q defined above is a 3-dimensional rotation. A rotation on \mathbb{R}^3 is specified by a rotation axis and a rotation angle. Can you find the axis and the angle of the rotation for f_q ? Does your answer for f_q^{-1} make sense when view them as rotations?

Proof. We first consider an easy case and let $q = \cos(\theta) + \sin(\theta)i$ in U. You can compute how f_q acts on each basis element $\{i, j, k\}$ of \mathbb{R}^3 :

$$f_q(i) = i$$

$$f_q(j) = \cos(2\theta)j + \sin(2\theta)k$$

$$f_q(k) = -\sin(2\theta)j + \cos(2\theta)k$$

So with respect to the basis $\{i, j, k\}$, the linear map $f_q : \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix

(1)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2\theta) & -\sin(2\theta) \\ 0 & \sin(2\theta) & \cos(2\theta) \end{pmatrix}.$$

Hence, f_q is a rotation. The axis is the line going through the origin in the vector *i* direction, and the rotation angle is 2θ . You can see this by noticing that f_q fixes *i* and the submatrix $\begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix}$ rotates the plane spanned by $\{j, k\}$ about the origin by the angle 2θ .

Now we consider the general case. Let $q = x + yi + zj + wk \in U$. We are going to find a suitable basis of \mathbb{R}^3 so that under that basis, the linear map f_q is also represented by the matrix as in (1).

Since ||q|| = 1, we can rewrite

$$q = \cos(\theta) + \sin(\theta)v_1$$

where v_1 is a unit vector in \mathbb{R}^3 . In particular, we have $x = \cos(\theta)$ and you can figure out what v_1 needs to be in terms of y, z, w and $\sin(\theta)$.

Let v_2 be a unit vector that is orthogonal to v_1 . Let $v_3 = v_1v_2$, which is also a unit vector. We claim that

- (a) $\{v_1, v_2, v_3\}$ forms a orthonormal basis of \mathbb{R}^3 .
- (b) The multiplication table for $\{v_1, v_2, v_3\}$ is exactly the same as the table for $\{i, j, k\}$.

Claim (b) is an immediate consequence of Exercise (1) or (2). For example,

$$v_1v_2 = v_3 \Rightarrow v_1v_2v_3 = -1 \Rightarrow v_2v_3 = v_1.$$

$\mathbf{2}$

To show (a), you will use Exercise (2) to verify that v_3 is orthogonal to both v_1 and v_2 . We omit the details here.

Finally based on claims (a) and (b), replacing *i* by v_1 , *j* by v_2 and *k* by v_3 , the exact computation we did for the special case above proves that with respect to the new basis $\{v_1, v_2, v_3\}$, the linear map f_q is also represented by the matrix in (1). Therefore, for $q = x + yi + zj + wk = \cos(\theta) + \sin(\theta)v_1$, the linear map $f_q : v \mapsto qv\bar{q}$ is a rotation with axis v_1 and rotation angle 2θ .

CORRECT SOLUTION WERE RECEIVED FROM:

(1) Jacob Cleveland	POW 6789: 🐥 🐥 🖣
(2) GAGE HOEFER	POW 6789: 🐥 🐥
(3) Grant Moles	POW 6789: 🐥 🐥 🐥 🗍
(4) ZACH SABATA	POW 6789: 🐥 🗸
(5) Brad Tuttle	POW 6789: 🌲 🜲