
Solution to Problem ♣–5

Problem: Show that for every positive real numbers a1, . . . , an the
following inequality holds true:
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Proof. We are showing the statement in the problem by induction on
n. First we note that if n = 1 and a1 > 0 then
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(so the initial step of the inductive proof is verified).
Suppose now that the inequality in question holds for any n positive

real numbers. Assume that a1, . . . , an, an+1 are positive real numbers.
Then, by the inductive hypothesis, we have
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In Problem ♣–4 (which was due on 09/21/18) we showed that for every
real numbers a, b, c, d such that c, d > 0 we have
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This completes the proof of the inductive step of our arguments. �
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