Problem: Show that for every real number a, b, c, d such that c, d > 0 we have

$$\frac{(a+b)^2}{c+d} \le \frac{a^2}{c} + \frac{b^2}{d}.$$

Proof. Clearly $0 \leq (bc - ad)^2$, so we have

$$2abcd \le b^2 c^2 + a^2 d^2.$$

Consequently,

$$a^2cd + b^2cd + 2abcd \leq a^2cd + b^2cd + b^2c^2 + a^2d^2,$$

and reordering both sides we obtain

$$(a+b)^2 cd \le (a^2d+b^2c)(c+d).$$

As c, d > 0 we immediately get

$$\frac{(a+b)^2}{c+d} \le \frac{a^2d+b^2c}{cd} = \frac{a^2}{c} + \frac{b^2}{d}.$$

г		

THERE WERE SIX SOLUTIONS SUBMITTED. CORRECT SOLUTIONS WERE RECEIVED FROM :

(1) David Cavanaugh	POW 4: 🐥
(2) JACOB CLEVELAND	POW 4: 🐥
(3) Ryan Fitzgibbons	POW 4: 🐥
(4) GAGE HOEFER	POW 4: 🐥
(5) Brad Tuttle	POW 4: 🐥
(6) CONNOR WICKS	POW 4: ♣