Problem: Let 0 , <math>q = 1 - p and $x \ge 0$. Show that $pe^{xq} + qe^{-xp} \le pe^{x^2q^2} + qe^{x^2p^2}$

Proof. Let 0 , <math>q = 1 - p and $x \ge 0$. In Problem 4–1 (which was due on 08/24/18) we showed that for every $t \in \mathbb{R}$ we have

$$e^t \le e^{t^2} + t.$$

Therefore,

$$e^{xq} \le e^{x^2q^2} + xq$$
 and $e^{-xp} \le e^{x^2p^2} - xp$.

Consequently, as 0 < p, q,

$$pe^{xq} \le pe^{x^2q^2} + xpq$$
 and $qe^{-xp} \le qe^{x^2p^2} - xpq$.

Adding these two inequalities side-by-side we get

$$pe^{xq} + qe^{-xp} \le pe^{x^2q^2} + xpq + qe^{x^2p^2} - xpq = pe^{x^2q^2} + qe^{x^2p^2}.$$

There were 2 solutions submitted. Correct solution was received from :

(1) GAGE HOEFER	POW 2: 🐥
(2) Brad Tuttle	POW 2: ♣