Solutions to Problems ♣-14/15

Problem14: Let $\theta > 0$. Show that

$$\frac{\sin(\theta)}{\theta} = \prod_{n=1}^{\infty} \cos\left(\frac{\theta}{2^n}\right).$$

Solution. In Problem -13 (which was due on 11/16/18) we showed that for any positive integer n and $\theta > 0$ we have

$$\sin(\theta) = 2^n \cdot \sin\left(\frac{\theta}{2^n}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right).$$

Consequently,

$$(\circledast) \qquad \frac{\sin(\theta)}{\theta} \cdot \frac{\theta/2^n}{\sin(\theta/2^n)} = \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right).$$

Since $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$, we know

$$\lim_{n \to \infty} \frac{\theta/2^n}{\sin(\theta/2^n)} = 1.$$

Therefore, letting $n \longrightarrow \infty$ in the eqution (**) above, we conclude

$$\frac{\sin(\theta)}{\theta} = \lim_{n \to \infty} \left(\cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \dots \cdot \cos\left(\frac{\theta}{2^n}\right) \right).$$

In other words, $\frac{\sin(\theta)}{\theta} = \prod_{n=1}^{\infty} \cos\left(\frac{\theta}{2^n}\right)$, as required.

CORRECT SOLUTION WAS RECEIVED FROM:

(1) Gage Hoefer	POW 14: 📥
(2) Grant Moles	POW 14: 🖡
(3) Wofgang L. Norgren	POW 14: 🖡
(4) Frederic Penney	POW 14: 🖡
(5) Henrik Penney	POW 14: 🖡
(6) Zach Sabata	POW 14: 🜲
(7) Dayne Shields	POW 14: 🖡
(8) Brad Tuttle	POW 14: 🜲

Problem15: Show that

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 + \sqrt{2}}}{2} \cdot \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdot \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdot \dots$$

Solution. First note that, for any real x, we have $\cos(2x) = 2\cos^2(x) - 1$. Hence, for any $n \in \mathbb{N}$,

$$\cos\left(2\cdot\frac{\pi/2}{2^n}\right) = 2\cos^2\left(\frac{\pi/2}{2^n}\right) - 1,$$

and thus

$$\cos\left(\frac{\pi}{2^{n+1}}\right) = \sqrt{\frac{\cos\left(\frac{\pi}{2^n}\right) + 1}{2}}.$$

Consequently,

$$\prod_{n=1}^{\infty} \cos\left(\frac{\pi}{2^{n+1}}\right) =$$

$$\cos(\pi/4) \cdot \sqrt{\frac{\cos(\pi/4) + 1}{2}} \cdot \sqrt{\frac{\sqrt{\frac{\cos(\pi/4) + 1}{2}} + 1}{2}} \sqrt{\frac{\sqrt{\frac{\sqrt{\frac{\cos(\pi/4) + 1}{2}} + 1}}{2}} + 1}{2}} \dots =$$

$$\frac{\sqrt{2}}{2} \cdot \sqrt{\frac{\frac{\sqrt{2}}{2} + 1}{2}} \cdot \sqrt{\frac{\sqrt{\frac{\sqrt{2}}{2} + 1}}{2} + 1} \cdot \sqrt{\frac{\sqrt{\frac{\sqrt{2}}{2} + 1}}{2} + 1}{2} \cdot \dots =$$

$$\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \sqrt{\frac{\frac{\sqrt{2+\sqrt{2}}}{2}+1}{2}} \cdot \sqrt{\frac{\sqrt{\frac{\sqrt{2+\sqrt{2}}}{2}+1}}{2}+1}{2} \cdot \dots$$

$$\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdot \sqrt{\frac{\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}+1}{2} \cdot \dots}$$

$$\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}+\sqrt{2}}}}{2} \cdot \dots$$

Finally, by Problem ♣–14 above we have

$$\frac{\sin(\pi/2)}{\pi/2} = \prod_{n=1}^{\infty} \cos\left(\frac{\pi/2}{2^n}\right),\,$$

so together

$$\frac{2}{\pi} = \frac{\sin(\pi/2)}{\pi/2} = \prod_{n=1}^{\infty} \cos\left(\frac{\pi}{2^{n+1}}\right) =$$

$$\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}+\sqrt{2}}}}{2} \cdot \dots$$

CORRECT SOLUTION WAS RECEIVED FROM:

(1) Gage Hoefer	POW 15: 🕹
(2) Grant Moles	POW 15: 🜲
(3) Zach Sabata	POW 15: 🜲
(4) Dayne Shields	POW 15: 🜲
(5) Brad Tuttle	POW 15: 🜲