
Solution to Problem ♣–13

Problem: Show that for any positive integer n and θ > 0 we have
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Solution. We show this statement by induction on n ∈ N. Let Φ(n) be
the assertion(
∀θ > 0

)(
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We will verify that Φ satisfies the assumptions of the Theorem on
Mathematical Induction.

Basic Step: It is well known that for each θ we have
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Consequently, Φ(1) holds true.

Inductive Step: We are going to argue that(
∀n ∈ N

)(
Φ(n) ⇒ Φ(n+ 1)

)
holds true. To this end, suppose n ∈ N and assume that Φ(n) holds
true. Suppose θ > 0. Applying our inductive hypothesis Φ(n) we get
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However,
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so we get
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Consequently, Φ(n+ 1) holds true. �
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