Solution to Problem -13

Problem: Show that for any positive integer n and $\theta > 0$ we have

$$\sin(\theta) = 2^n \cdot \sin\left(\frac{\theta}{2^n}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right).$$

Solution. We show this statement by induction on $n \in \mathbb{N}$. Let $\Phi(n)$ be the assertion

$$\left(\forall \theta > 0\right) \left(\sin(\theta) = 2^n \cdot \sin\left(\frac{\theta}{2^n}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right)\right).$$

We will verify that Φ satisfies the assumptions of the Theorem on Mathematical Induction.

BASIC STEP: It is well known that for each θ we have

$$\sin(\theta) = \sin\left(2 \cdot \frac{\theta}{2}\right) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right).$$

Consequently, $\Phi(1)$ holds true.

INDUCTIVE STEP: We are going to argue that

$$(\forall n \in \mathbb{N}) (\Phi(n) \Rightarrow \Phi(n+1))$$

holds true. To this end, suppose $n \in \mathbb{N}$ and assume that $\Phi(n)$ holds true. Suppose $\theta > 0$. Applying our inductive hypothesis $\Phi(n)$ we get

$$\sin(\theta) = 2^n \cdot \sin\left(\frac{\theta}{2^n}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right).$$

However,

$$\sin\left(\frac{\theta}{2^n}\right) = \sin\left(2 \cdot \frac{\theta}{2^{n+1}}\right) = 2\sin\left(\frac{\theta}{2^{n+1}}\right)\cos\left(\frac{\theta}{2^{n+1}}\right),$$

so we get

$$\begin{aligned} \sin(\theta) &= \\ 2^n \cdot 2\sin\left(\frac{\theta}{2^{n+1}}\right)\cos\left(\frac{\theta}{2^{n+1}}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right) = \\ 2^{n+1}\sin\left(\frac{\theta}{2^{n+1}}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{4}\right) \cdot \cos\left(\frac{\theta}{8}\right) \cdot \ldots \cdot \cos\left(\frac{\theta}{2^n}\right) \cdot \cos\left(\frac{\theta}{2^{n+1}}\right). \end{aligned}$$
Consequently, $\Phi(n+1)$ holds true.

Correct solution was received from :

(1) GAGE HOEFER	POW 13: 🐥
(2) Grant Moles	POW 13: 🐥
(3) Henrik Penney	POW 13: 🐥
(4) ZACH SABATA	POW 13: 🜲
(5) Brad Tuttle	POW 13: 🜲