Solution to Problems $\heartsuit-4$

Problem A: Does there exist a subset A of the plane \mathbb{R}^2 such that the orthogonal projection of A on any straight line in the plane has exactly 2017 distinct points?

Answer: No, there is no such set. To show this let us assume toward contradiction that a set $A \subseteq \mathbb{R}^2$ has the property that the orthogonal projection of A on any straight line in the plane has exactly 2017 distinct points.

Pick any system OXY of Cartesian coordinates on the plane. Since the projections of our set A on each of the axes OX, OY have 2017 points, we conclude that the set A has at most $2017 \cdot 2017$ points.

Now consider all straight lines which go through at least 2 points from the set A. There are at most $\binom{2017^2}{2}$ (so finitely many) such lines. Consequently, there is an orthogonal projection which does not "glue" any two points of the set A, so the set A must have exactly 2017 points. But considering an orthogonal projection along a straight line going through two distinct points of our set we notice that this projection "glues" the two points on the line and thus the image of the set A in this projection has at most 2016 points, a contradiction.

CORRECT SOLUTION WAS RECEIVED FROM :

(1) Brad Tuttle

POW 4A: \heartsuit

Problem B: Does there exists a set $B \subseteq \mathbb{R}^2$ which intersects every straight line in exactly 2017 points ?

Answer: Yes, there are sets like this. We will build one using transfinite induction. Let \mathfrak{c} be the cardinality of the continuum (treated as an ordinal number). Fix a list $\langle \ell_{\alpha} : \alpha < \mathfrak{c} \rangle$ of all straight lines in the plane.

By induction on $\alpha < \mathfrak{c}$ we construct sets $S_{\alpha} \subseteq \mathbb{R}^2$ so that the following inductive demands are satisfied:

 $(*)_{\alpha}$ the union $\bigcup_{\beta \leq \alpha} S_{\beta}$ contains exactly 2017 points from the line ℓ_{α} , $(**)_{\alpha}$ the union $\bigcup_{\beta \leq \alpha} S_{\beta}$ contains no 2018 colinear points, and

 $(***)_{\alpha} S_{\alpha}$ has at most 2017 elements.

Suppose that we have defined S_{β} for $\beta < \alpha$ so that the demands $(*)_{\beta}$ - $(***)_{\beta}$ are satisfied. Let $A = \bigcup_{\beta < \alpha} S_{\beta}$ and note that

- $(\circledast)_1$ the set A contains no 2018 collinear points and
- $(\circledast)_2$ the cardinality of A is smaller than the continuum \mathfrak{c} , so
- $(\circledast)_3$ the family \mathcal{L} of all straight lines passing through at least two points of A is of size smaller than \mathfrak{c} .

It follows from $(\circledast)_1$ that the intersection $\ell_{\alpha} \cap A$ has at most 2017 points. If the intersection $\ell_{\alpha} \cap A$ has (exactly) 2017 points, then we set $S_{\alpha} = \emptyset$. If this intersection has exactly 2017 -k points, with $0 < k \leq 2017$, then we may use $(\circledast)_3$ to choose points $x_1, \ldots, x_k \in \ell_{\alpha}$ such that $x_1, \ldots, x_k \notin \ell$ for any $\ell \in \mathcal{L}$. We set $S_{\alpha} = \{x_1, \ldots, x_k\}$. One easily verifies that in each case the demands $(\ast)_{\alpha} - (\ast \ast)_{\alpha}$ are satisfied.

After the above construction is carried out we let $B = \bigcup_{\alpha < \mathfrak{c}} S_{\alpha}$. It

follows from $(**)_{\alpha}$ (for $\alpha < \mathfrak{c}$) that the set *B* contains no 2018 colinear points. By $(*)_{\alpha}$ (for $\alpha < \mathfrak{c}$) it intersects each line at exactly 2017 points.

Intrigued by this solution? Would like to learn more about set theoretic methods in mathematics? Talk to Andrzej Rosłanowski about possible course/seminar "Set Theory for a working mathematician".

Correct solution was received from :

(1) Brad Tuttle

POW 4B: ♡