Problem A: Suppose that a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is nonconstant, periodic and has at least one continuity point. Prove that f has a smallest positive period, the so called fundamental period.

Answer: Let P be the set of all positive periods of the function f. Suppose towards contradiction that the function f does not have the smallest positive period, that is the set P has no smallest element.

Note that if $t_1 < t_2$ are from P, then also $t_2 - t_1 \in P$, as

$$f(x + (t_2 - t_1)) = f((x - t_1) + t_2) = f(x - t_1) = f(x).$$

Also, if $t \in P$ and n > 0 is a natural number, then $nt \in P$ and -nt is a period of f as well.

Since the set P is bounded from below and non-empty, it has the infimum. We may choose a (strictly) decreasing sequence $(s_n)_{n=1}^{\infty}$ of elements of P converging to $\inf(P)$. Then $T_n \stackrel{\text{def}}{=} s_n - s_{n+1} \in P$, $T_n > 0$ and $\lim_{n \to \infty} T_n = 0$.

Let $x_0 \in \mathbb{R}$ be a point of continuity of f. Since f is not constant, there is $x_1 \neq x_2$ such that $f(x_1) \neq f(x_0)$. Put $\varepsilon_0 = \frac{|f(x_0) - f(x_1)|}{2} > 0$ and apply the continuity of f at x_0 to find $\delta_0 > 0$ such that

$$(\forall x \in \mathbb{R})(|x - x_0| < \delta_0 \Rightarrow |f(x) - f(x_0)| < \varepsilon_0).$$

Choose a natural number n_0 such that $0 < T_{n_0} < \delta_0/2$ (every sufficiently large integer will do). Then at least one of the numbers kT_{n_0} , $k \in \mathbb{Z}$, belongs to the interval $(x_0 - x_1 - \delta_0, x_0 - x_1 + \delta_0)$. Consequently, $x_1 + kT_{n_0} \in (x_0 - \delta, x_0 + \delta)$ and (by the choice of δ_0)

$$|f(x_1) - f(x_0)| = |f(x_1 + kT_{n_0}) - f(x_0)| < \varepsilon_0 < |f(x_1) - f(x_0)|,$$

a contradiction.

Correct solution was received from :

(1) Brad Tuttle

POW 2A: \heartsuit

Problem B: Suppose that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and periodic with period t > 0. Prove that there is $x_0 \in \mathbb{R}$ such that

$$f\left(x_0 + \frac{t}{2}\right) = f(x_0).$$

Answer: Define the function
$$g : \mathbb{R} \longrightarrow \mathbb{R}$$
 by

$$g(x) = f\left(x + \frac{t}{2}\right) - f(x)$$
 for $x \in \mathbb{R}$.

Then q is continuous on \mathbb{R} and

- $g(0) = f(\frac{t}{2}) f(0)$, and $g(\frac{t}{2}) = f(t) f(\frac{t}{2}) = f(0) f(\frac{t}{2})$.

If g(0) = 0 then $f\left(0 + \frac{t}{2}\right) = f(0)$, so $x_0 = 0$ is as required. Otherwise, g(0) and $g(\frac{t}{2})$ have opposite signs so by the Intermediate Value Theorem there is $x_0 \in (0, \frac{t}{2})$ such that $g(x_0) = 0$. Then $f(x_0 + \frac{t}{2}) = f(x_0)$.

CORRECT SOLUTIONS WERE RECEIVED FROM :

(1) Cody Anderson	POW 2B: \heartsuit	Total Score so far: \heartsuit
(2) TREVOR PINTZIEN	POW 2B: \heartsuit	Total Score so far: \heartsuit
(3) Brad Tuttle	POW 2B: \heartsuit	Total Score so far: $\heartsuit \heartsuit$