Problem A: Prove that for any positive integer \( n \), there are infinitely many sequences of \( n \) consecutive composite positive integers.

Answer: Let \( n \) be a positive integer. The sequences \( m, m + 1, \ldots, m + n - 1 \), where \( m = t(n + 1)! + 2, t = 1, 2, \ldots \) are the sequences of \( n \) consecutive composite positive integers, because \( i + 2 \) divides \( m + i \) and \( i + 2 < m + i \), for \( i = 0, 1, \ldots, n - 1 \), so \( m + i \) are composite numbers.

Correct solutions were received from:

(1) Brad Tuttle
**Problem B:**  *Find the sum:*
\[
\ln(\tan 1^\circ) + \ln(\tan 2^\circ) + \ln(\tan 3^\circ) + \ldots + \ln(\tan 89^\circ).
\]

**Answer:** We note that \(\tan l^\circ \cdot \tan (90^\circ - l^\circ) = 1, \ 1 \leq l \leq 89\). Thus, we have
\[
2 \sum_{l=1}^{89} \ln(\tan l^\circ) = \sum_{l=1}^{89} \left( \ln(\tan l^\circ) + \ln(\tan (90^\circ - l^\circ)) \right)
\]
\[
= \sum_{l=1}^{89} \ln(\tan l^\circ \cdot \tan (90^\circ - l^\circ)) = \sum_{l=1}^{89} \ln(1) = 0.
\]
Hence
\[
\ln(\tan 1^\circ) + \ln(\tan 2^\circ) + \ln(\tan 3^\circ) + \ldots + \ln(\tan 89^\circ) = 0.
\]

**Correct solutions were received from:**

(1) **Ali Al Kadhim**  
PW 9B: ♠

(2) **Cody Anderson**  
PW 9B: ♠

(3) **Gage Hoefer**  
PW 9B: ♠

(4) **Brad Tuttle**  
PW 9B: ♠