Solution to Problems ♠–5

Problem A: Show that every number in the sequence

1007, 10017, 100117, 1001117, 10011117,...

is divisible by 53.

Answer: For a natural number \(n \) let \(a_n \) be the natural number with the decimal expansion \(1001 \underbrace{11\ldots 1}_{n-1}7 \). One should notice that

\[
a_{n+1} = (a_n - 6) \cdot 10 + 7 = 10a_n - 53.
\]

Now by a straightforward induction on \(n \in \mathbb{N} \) we show that each number \(a_n \) is divisible by 53. To this end we verify that the assumptions of the Theorem on Mathematical Induction are satisfied.

Basic Step: \(n = 1 \)

We note that \(a_1 = 1007 = 19 \cdot 53 \), so our claim is readily true for \(n = 1 \).

Inductive Step: Let \(n \in \mathbb{N} \) be an arbitrary natural number and let us assume that

(\(\oplus \)_0) \(a_n \) is divisible by 53.

Thus for some integer \(k \) we have

(\(\oplus \)_1) \(a_n = 53 \cdot k \).

Now,

\[
a_{n+1} = 10a_n - 53 = 10 \cdot 53 \cdot k - 53 = 53 \cdot (10k - 1).
\]

Since \(10k - 1 \) is an integer, we conclude that (under our inductive assumption (\(\oplus \)_0), \(a_{n+1} \) is divisible by 53. Thus if our claim is true for \(n \), then it is also true for \(n + 1 \).

Consequently, by the Theorem on Mathematical Induction we may conclude that \((\forall n \in \mathbb{N})(53 \mid a_n)\).

Correct solutions were received from:

1. Ali Al Kadhim
2. Cody Anderson
3. Gage Hoefer
4. Sarah McCarty
5. Mackenzie McClure
6. Bryce W. Sahs
7. Worthy S. Tudent
8. Brad Tuttle
Problem B: Show that for $n \geq 6$ a square can be dissected into n smaller squares, not necessarily all of the same size.

Answer: For a natural number $n \geq 8$ let $P(n)$ be the assertion that a square can be dissected into k smaller squares (not necessarily all of the same size) for $k = n$ and for $k = n - 1$ and for $k = n - 2$. It should be clear that the sentence
\[(\forall n \geq 8) \ P(n) \]
is equivalent to the claim that for $n \geq 6$ a square can be dissected into n smaller squares, not necessarily all of the same size.

We will show $(\forall n \geq 8) \ P(n)$ using the Theorem on Mathematical Induction. To this end we will verify that the formula $P(n)$ satisfies the assumptions of this theorem.

Basic Step: $n = 8$
We have to justify that a square can be partitioned into 8, 7, and 6 squares (not necessarily all of the same size). But this follows by the following pictures.

Inductive Step: Let $n \geq 8$ be an arbitrary natural number and let us assume that $P(n)$ holds true, that is
\[(\exists) \ a \ square \ can \ be \ dissected \ into \ k \ smaller \ squares \ (not \ necessarily \ all \ of \ the \ same \ size) \ for \ k = n \ and \ for \ k = n - 1 \ and \ for \ k = n - 2. \]
We are going to argue that then $P(n + 1)$ holds true. First we note that by our assumption (\exists), a square can be divided into $n = (n + 1) - 1$ and into $n - 1 = (n + 1) - 2$ squares. To create a partition into $n + 1$ squares we use the the inductive hypothesis (\exists) to divide a square into
$k = n - 2$ squares. Take one of these $n - 2$ squares and divide it into four identical smaller squares. This increases the number of subsquares by 3, producing a square broken up into $(n - 2) + 3 = n + 1$ squares. Thus if our claim is true for n, then it is also true for $n + 1$.

Consequently, by the Theorem on Mathematical Induction we may conclude that (\diamondsuit) holds true.

Correct solutions were received from:

(1) Ali Al Kadhim
(2) Gage Hoefer
(3) Worthy S. Tudent
(4) Brad Tuttle