Title Page

Binding Characteristics of Two Oxytocin Variants and Vasopressin at Oxytocin Receptors from Four Primate Species with Different Social Behavior Patterns

Jack H. Taylor, Nancy A. Schulte, Jeffrey A. French, and Myron L. Toews

Callitrichid Research Center, Department of Psychology, University of Nebraska at Omaha (JHT, JAF)

Department of Biology, University of Nebraska at Omaha (JAF)

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (NAS, MLT)
Running Title Page

BINDING CHARACTERISTICS OF FOUR PRIMATE OXYTOCIN RECEPTORS

Corresponding Author
Myron Toews
mtoews@unmc.edu
Phone: 402-559-7197
FAX: 402-559-7495
Durham Research Center, 3042
985800 Nebraska Medical Center
Omaha, NE 68198-5800

Number of Text Pages: 16
Number of Tables: 4
Number of Figures: 3
Number of References: 36
Abstract Word Count: 238
Introduction Word Count: 744
Discussion Word Count: 1365

Abbreviations: AVP - Arginine-8-vasopressin; CHO – Immortalized Chinese hamster ovary cells;

HGH-BSA - High glucose HEPES-buffered Dulbecco's Modified Eagle's Medium containing
0.1% bovine serum albumin; Leu8-OT - Leucine-8-oxytocin; NWM – New World monkey; OT -
Oxytocin; OTR – Oxytocin receptor; Pro8-OT - Proline-8-oxytocin;

Recommended Section Assignment: Cellular and Molecular
ABSTRACT

A clade of New World monkeys (NWM) exhibits considerable diversity in both oxytocin ligand (OT) and receptor (OTR) structure. Most notable is the variant Pro^8^-OT, with proline instead of leucine at the eighth position (Pro^8^-OT), resulting in a rigid bend in the peptide backbone. A higher proportion of species that express Pro^8^-OT also engage in biparental care and social monogamy. When marmosets (genus *Callithrix*), a biparental and monogamous Pro^8^-OT NWM species, are administered the ancestral Leu^8^-OT, there is no change in social behavior compared to saline treatment. However, when Pro^8^-OT is administered, marmosets’ sociosexual and prosocial behaviors are altered. The studies here tested the hypothesis that OTR binding affinities and OT-induced intracellular Ca^{2+} potencies would favor the native oxytocin ligand in OTRs from four primate species, each representing a unique combination of ancestral lineage, breeding system, and native OT ligand: human (Leu^8^-OT, monogamous, apes), macaque (Leu^8^-OT, nonmonogamous, Old World monkey), marmoset (Pro^8^-OT, monogamous, NWM) and Titi monkey (Leu^8^-OT, monogamous, NWM). OTRs were expressed in CHO cells and tested for intact-cell binding affinities for Pro^8^-OT, Leu^8^-OT, and arginine vasopressin (AVP), as well as intracellular Ca^{2+} signaling after stimulation with Pro^8^-OT, Leu^8^-OT and AVP. Contrary to our hypothesis, Pro^8^-OT bound at modestly higher affinities and stimulated calcium signaling at modestly higher potencies compared to Leu^8^-OT in all four primate OTRs. Thus differences downstream from ligand-receptor binding event are more likely to explain the different behavioral responses to these two ligands.
Introduction

Oxytocin (OT) is a nonapeptide neurohormone that is critical for mammalian parturition, lactation, and parental behavior (Ellendorff et al., 1982; Fuchs et al., 1982; McNeilly et al., 1983; Chan et al., 1996; Lee et al., 2009). OT binds and activates its canonical G protein-coupled receptor, the oxytocin receptor (OTR). Synthetic OT is used widely in clinical settings for inducing and accelerating labor. Because of its ability to modulate a wide variety of social behaviors (Lee et al., 2009), it is currently being evaluated for its clinical use in disorders with a social component, such as autism spectrum disorder and schizophrenia (Bakermans-Kranenburg and van IJzendoorn, 2013; Feifel et al., 2016; DeMayo et al., 2017; Parker et al., 2017). Considerable effort has been invested in engineering oxytocin analogs and formulations for potential therapeutic use and to extend understanding of OT actions, particularly CNS and behavioral effects (Manning et al., 2012; Busnelli et al., 2013; Muttenthaler et al., 2017). Though these efforts with novel synthetic analogs have been reasonably successful, naturally occurring variants of the OT peptide could provide an alternate route to novel agents and therapies (Gruber et al., 2012).

The nonapeptide family of hormone ligands is ancient and is present in nearly all animal lineages (Beets et al., 2013; Lockard et al., 2016). OT-like ligands generally vary at the third, fourth, or eighth amino acid position (Gruber et al., 2012), and the amino acid at the eighth position strongly affects the activity of the peptide on its target organs (Sawyer and Manning, 1973; Manning et al., 2012; Muttenthaler et al., 2017). OT and the closely related nonapeptide arginine vasopressin (AVP) differ at amino acid positions three and eight and have vastly different roles in mammalian physiology, even though the affinity of OT for OTRs is only two-fold greater than the affinity of AVP for OTRs (Manning et al., 2012). Despite having only a two-fold lower binding affinity for OTRs, AVP is over thirty-fold less potent than OT for generating OTR responses (Manning et al., 2012). Variations among species in their nonapeptide receptors
correlate with variations in their respective OT-like ligands, indicating ligand-receptor co-evolution (Koehbach et al., 2013). The presence of OT-like peptides across diverse animal taxa suggests the universal importance of their functions, and their co-evolution with their ligands suggests a tightly aligned signaling system for these functions.

Despite variation across Animalia taxa, the OT ligand is highly conserved within eutherian mammals (Wallis, 2012). Recently, a nonsynonymous nucleotide substitution in the OXT gene coding for OT was discovered in four species of New World monkeys (NWM), resulting in a proline at amino acid position eight (Pro^8^-OT) in place of the typical leucine (Leu^8^-OT) (Lee et al., 2011). Subsequent screening showed that the Pro^8^-OT variant is present in at least twenty NWM species (Ren et al., 2015; Vargas-Pinilla et al., 2015). Additional OT variants were also identified, for a total of six different forms of OT in NWM, with at least one species from each NWM clade exhibiting an OT variant (Ren et al., 2015; Vargas-Pinilla et al., 2015). OTRs also vary in NWM, particularly in the N-terminus (Ren et al., 2015; Vargas-Pinilla et al., 2015), which is important for binding to the tail of the OT ligand (Postina et al., 1996; Gimpl and Fahrenholz, 2001), and there is strong evidence for OT-OTR co-evolution (Koehbach et al., 2013; Ren et al., 2015; Vargas-Pinilla et al., 2015). Moreover, OXTR variation is associated with social monogamy among primates (Ren et al., 2015), and OT ligand variation at position eight is associated with litter size within the family Cebidae (Vargas-Pinilla et al., 2015). Both native and non-native OT ligands modulate social behavior in NWM expressing Pro^8^-OT (French et al., 2016), but the native Pro^8^-OT is more effective at modulating behavior than the ancestral Leu^8^-OT in the marmoset, a monogamous and biparental NWM (Cavanaugh et al., 2014; Mustoe et al., 2015, 2018). Together these findings indicate that both OT ligand variation and the corresponding variations in OTRs among NWMs contribute to functional outcomes.

Based on the findings summarized above, we hypothesized that the binding affinities and signaling potencies of primate OT variants are different for different OTR variants, with each
receptor variant preferring the ligand variant from the same species. The studies presented here test this hypothesis by measuring binding affinities and signaling potencies for Leu8, Pro8, and AVP at the OTRs from four primate species, each representing a unique combination of ancestral lineage, breeding system, and native OT ligand.
Methods and Materials

OTR transfection and cell culture

Chinese hamster ovary (CHO; Female origin) cells were purchased from ATCC and cultured at 37°C with 5% CO₂ using Ham’s F12 medium supplemented with 10% fetal bovine serum and 100 units/mL penicillin and 100 µg/ml streptomycin. Human, marmoset, and macaque OTR plasmids (Table 1) were purchased from Genscript in a pcDNA3.1+ vector. The titi monkey plasmid was generated by amplifying and ligating the coding region of the titi OXTR from genomic titi monkey DNA (flanked with BamHI and XhoI restriction sites) and ligating it into a T-vector (pMD19). Competent *E. coli* were transformed using this vector, plated onto LB/ampicillin/IPTG/X-Gal plates, and incubated overnight at 37°C. White colonies were selected, then plasmid DNA was purified and sequenced. Sequence-confirmed plasmids were then digested with BamHI and XhoI and ligated into a pcDNA3.1+ vector. CHO cells were then transfected using Turbofect according to the manufacturer’s instructions and kept under selective pressure using 400 µg/mL G418 antibiotic. Individual clonal lines were generated by plating batch-transfected cells at approximately 10 cells/mL (1 cell/100µL) into 96-well plates and then selecting wells for screening that originated from a single colony. Clonal lines were screened using an intact cell ¹²⁵I-ornithine vasotocin analog (¹²⁵I-OVTA) binding assay and selected for similar receptor expression across species, defined as total radioligand binding. All experiments were done in a single clone per species, except for the marmoset, in which two clones were used.

Intact cell saturation binding assays

CHO cells expressing primate OTRs were plated at 150,000 cells/mL (15,000 cells per well/100 µL) into 96-well plates and grown to 80-90% confluence. On the day of assay, growth medium was aspirated and cells were quickly washed once with 100 µL ice-cold high glucose
HEPES-buffered Dulbecco's Modified Eagle's Medium containing 0.1% bovine serum albumin (HGH-BSA) and then placed on ice. Then 50 µL of ice-cold \(^{125}\text{I}\)-OVTA (PerkinElmer) in doubling concentrations from about 15 to 2000 pM were added in triplicate (technical replicates) to all wells and incubated for three hours on ice. At the end of the assay, an aliquot of the binding medium was collected to quantify free radioligand directly, eliminating any concerns about differential depletion of ligand due to differential receptor expression levels. Cells were then washed four times with 100 µL ice-cold HGH-BSA, solubilized with 100 µL 0.2 N NaOH, and counted on a gamma counter. Non-specific binding was defined as \(^{125}\text{I}\)-OVTA binding occurring in the presence of excess competitor (10\(^{-4}\) M Leu\(^{8}\)-OT). Binding affinity (K\(_d\)) for \(^{125}\text{I}\)-OVTA was determined using GraphPad Prism to fit the specific bound vs. free ligand data to a single-site binding equation. These assays were done at least three times on three different days using fresh aliquots of \(^{125}\text{I}\)-OVTA and competitor, and K\(_d\) values were averaged across three biological replicates (five biological replicates for marmoset).

Intact cell competition binding assays

CHO cells expressing primate OTRs were plated at 150,000 cells/mL (15,000 cells per well/100ul) into 96-well plates and grown to 80-90% confluence. On the day of assay, growth medium was aspirated and cells were quickly washed once with 100 µL ice-cold HGH-BSA and then placed on ice. Then 50 µL of roughly 50,000 CPM ice-cold \(^{125}\text{I}\)-OVTA were added in triplicate (technical replicates) to all wells in the presence or absence of 10\(^{-11}\) to 10\(^{-5}\) M Pro\(^{8}\)-OT (CYIQNCPPG-NH\(_2\); Anaspec), Leu\(^{8}\)-OT (CYIQNCPLG-NH\(_2\); Anaspec) or AVP (CYFQNCPRG-NH\(_2\); Anaspec) and incubated for three hours on ice. At the end of the assay, an aliquot of the binding medium was collected to quantify free radioligand directly. Cells were then washed four times with 100 µL ice-cold HGH-BSA, solubilized with 100 µL 0.2 N NaOH, and counted on a gamma counter. Binding affinities (IC\(_{50}\)) were determined by plotting bound \(^{125}\text{I}\)-OVTA vs. competitor concentration. IC\(_{50}\) values were then calculated using the Cheng-Prusoff equation.
and each receptor’s affinity for 125I-OVTA to produce K_i values. These assays were done at least three times on three different days using fresh aliquots of 125I-OVTA and Leu8-OT, Pro8-OT, and AVP for three biological replicates per clone.

Ca$^{2+}$ mobilization assays

CHO cells expressing primate OTRs were plated into 96-well plates and grown to 80-90% confluence. On the day of assay, growth medium was aspirated and cells were incubated at 37˚C with 100 µL Fluo-4 Direct dye mixed in Fluo-4 Direct Ca$^{2+}$ Assay Buffer with 5 mM probenecid for one hour. At the end of one hour, baseline fluorescence was measured at 37˚C followed by stimulated fluorescence in the presence or absence of 10$^{-11}$ to 10$^{-6}$ M Pro8-OT, Leu8-OT, or AVP (3 x technical replicates). Peak fluorescence minus baseline fluorescence was then plotted as a function of ligand concentration to determine EC$_{50}$ values. These assays were done at least three times on three different days using fresh aliquots of Leu8-OT, Pro8-OT, and AVP for three biological replicates per clone.

Data Analysis

Binding affinities (K_d) for 125I-OVTA at each primate OTR were calculated by subtracting nonspecific binding and then plotting bound 125I-OVTA vs. free 125I-OVTA.

Because concentrations of 125I-OVTA were not identical from experiment to experiment, technical replicates within each experiment (n=3) were normalized and binding affinities (K_i) were calculated using the Cheng-Prusoff equation and the measured binding affinity for 125I-OVTA. Technical replicates were then averaged and used as biological replicates (n=3 per clone) to determine and compare K_i values for each ligand within species. A Bonferroni-corrected cutoff (p = .05 ÷ 3 = .0167) was used to determine statistically significant differences in K_i values.
Within species differences in Ca2+ mobilization potency (EC\textsubscript{50}) were determined by normalizing and averaging each technical replicate (n=3) and then using the biological replicates (n=3) to assess ligand comparisons (Pro8-OT vs. Leu8-OT, Pro8-OT vs. AVP, Leu8-OT vs. AVP). A Bonferroni-corrected cutoff (p = .05 \div 3 = .0167) was used to determine statistically significant differences in K\textsubscript{i}'s.

All data were analyzed using the nonlinear least-squares curve-fitting capabilities of GraphPad Prism.
Results

Saturation binding assays.

Saturation assays were performed on 96-well plates with 50 µL binding medium per well. Representative saturation curves for all receptors are shown in Figure 1. All of the binding and signaling assays for the human receptor were conducted with a single clone with a B_{max} value of 17 ± 6 fmol/well (n=3). All assays for the macaque receptor were with a clone with a B_{max} value of 12 ± 5 fmol/well (n=3). All assays for the titi receptor were with a clone with a B_{max} value of 44 ± 12 fmol/well (n=3). For the marmoset receptor, some assays were performed with a significantly higher expressing clone, R9, with a B_{max} value of 91 ± 20 fmol/well (n=2); additional experiments were performed with a clone with lower expression, R10, with a B_{max} value of 33 ± 5 fmol/well (n=4).

Saturation binding analyses revealed only relatively small differences in binding affinities for the radioligand $^{125}\text{I}-\text{OVTA}$ among the four species, ranging from 161 to 481 pM (Table 2). The human and macaque OTRs exhibited very similar affinities that were somewhat higher than those for titi and marmoset, with marmoset exhibiting the lowest affinity.

Competition binding assays with OT variants and AVP

In competition binding assays, Pro8-OT exhibited a higher binding affinity than Leu8-OT for all four species, with a 1.5-fold differences macaque, a 2-fold difference for marmoset, a 3-fold difference for human, and over 6-fold difference for titi. Only for titi and human was the difference in binding affinity statistically significant, (F's(1, 42) > 12.1, $p < .016$). For the human OTR, the difference was due to greater affinity for Pro8-OT, while for the titi OTR, the difference was due to lower affinity for Leu8-OT rather than higher affinity for Pro8-OT compared to the other species (Figure 2; Table 2). For both OT variants, the absolute binding affinities were 3- to 5-fold higher for human, macaque, and marmoset than for titi.
Binding affinities for AVP were assessed alongside the two OT variants for all of the receptors. Compared to Pro8-OT and Leu8-OT, respectively, binding affinity for AVP was 20- and 8-fold lower for human, 11- and 6-fold lower for macaque, 13- and 6-fold lower for marmoset, but 13- and only 2-fold lower for titi. In fact, the affinity of the titi OTR for Leu8-OT was not significantly higher than that for AVP (\(F'(1, 42) = 2.07, p = .157\)). However, the rank order of potencies was the same for all species, with affinities for Pro8 > Leu8 > AVP.

\textit{Ca}^{2+} \text{signaling assays}

In \textit{Ca}^{2+} mobilization assays, the rank order of potencies was the same for all species and with the same pattern as for binding, Pro8 > Leu8 > AVP; however, the magnitude of the differences was smaller for signaling than for binding. Pro8 and Leu8-OT were roughly equipotent for all species, with only 1.5-fold greater potency of Pro8-OT vs. Leu8-OT for human, macaque, marmoset, and titi (Figure 3; Table 3). Pro8-OT consistently exhibited a slightly lower maximal response than Leu8 for all species except marmoset.

\textit{Ca}^{2+} mobilization potencies for AVP were assessed alongside the two OT variants for all of the receptors. Compared to Pro8-OT and Leu8-OT, respectively, potency for AVP was 12- and 7-fold lower for human, 6- and 4-fold lower for macaque, 5- and 2-fold lower for marmoset, and 8- and 5-fold lower in titi. The absolute potencies for Pro8-OT and Leu8-OT for human and marmoset were similar, but the potency of AVP for the marmoset receptor was nearly 2-fold higher than it was for the human receptor. Potencies for each ligand across species were higher for human and marmoset OTR compared to macaque and titi monkey.

\textit{Ca}^{2+} mobilization potencies relative to binding affinities were also computed as a metric of coupling efficiency (Table 4). In general, efficiencies within species were similar, with signaling EC\textsubscript{50} values exhibiting potencies over two log units higher than the binding affinities for all three ligands. The macaque OTR was the least efficient, signaling at potencies less than two
log units higher than the binding affinity for all three ligands. Notably, in all species except titi monkey, AVP was equally or more efficient at mobilizing Ca$^{2+}$ than Pro8-OT or Leu8-OT, per unit of binding affinity.
Discussion

The studies here tested the hypothesis that the coevolution between Pro8-OT and OTRs in NWM (Ren et al., 2015; Vargas-Pinilla et al., 2015) would confer greater selectivity in binding and signaling for Pro8-OT over the ancestral Leu8-OT at receptors from Pro8-OT-expressing species, and conversely higher selectivity for Leu8-OT at receptors from species expressing Leu8-OT. The binding and signaling data in this study show that this hypothesis is at best only partially supported. For the marmoset OTR, the species-native Pro8-OT bound with only modestly higher affinity and induced Ca2+ mobilization with higher potency than Leu8-OT. In humans and titi monkeys, the species-non-native ligand Pro8-OT also bound with higher affinity than the species-native ligand Leu8-OT. For receptors from all three Leu8-OT-expressing species, the two ligands were equipotent at mobilizing Ca2+. The higher binding affinity for Pro8-OT for all of the species, including those whose native hormone is Leu8-OT, was unexpected and not consistent with our hypothesis of binding affinities for each species correlating with their native ligand. One explanation for the observed preference for Pro8-OT over Leu8-OT in all species may be that the flexible (Kotelchuck et al., 1972; Brewster et al., 1973) tail of Leu8-OT can orient into a conformation that is similar to the more rigid structure of Pro8-OT (Lee et al., 2011) for only a smaller percentage of ligand-receptor interactions than Pro8-OT, and that the optimal conformation for Leu8-OT is one that is similar to the structure of Pro8-OT. The lack of significant preferences for the endogenous ligand in terms of signaling potencies was similarly unexpected. Thus differences in other factors, perhaps downstream of the initial receptor binding and activation steps, are now the more likely explanations for the differential behavioral responses to OT in Leu8-OT vs.Pro8-OT-expressing species.

The ability of AVP to bind and activate primate OTRs was also tested, because AVP binds and activates OTRs, and AVP is known to affect social behavior in primates, including titi monkeys and marmosets (Caldwell et al., 2008; Jarcho et al., 2011; Taylor and French, 2015;
Taylor et al., 2017). In all species except titi monkey, AVP bound with much lower affinity to the OTR than Pro\(^8\)-OT or Leu\(^8\)-OT, and in all species AVP had lower potency for mobilizing Ca\(^{2+}\) than Pro\(^8\)-OT or Leu8-OT. These results show that the coevolution of Pro\(^8\)-OT and the OTR in marmosets has not altered selectivity for AVP vs. the two OT variants.

This study is the first description of NWM OT ligand variant binding in nonhuman primates, and the Ca\(^{2+}\) mobilization data inform the recent research investigating OTR signaling and NWM ligand variants in rodent models. Parreiras-e-Silva and colleagues (Parreiras-E-Silva et al., 2017) found no differences in Ca\(^{2+}\) signaling at the human OTR between Pro\(^8\)-OT, Leu\(^8\)-OT, or the additional NWM OT variant Val\(^3\)Pro\(^8\)-OT. Our data also partially replicate those done by our collaborators (Pierce et al., 2016) that found no difference in Ca\(^{2+}\) signaling between Pro\(^8\)-OT and Leu\(^8\)-OT at the human OTR but that Pro\(^8\)-OT was more efficacious than Leu\(^8\)-OT at inducing Ca\(^{2+}\) mobilization at the marmoset OTR. Taken together, these data indicate that the substitution of proline in place of leucine does not inhibit the G protein-coupled activity in species that express the ancestral Leu\(^8\)-OT. Perhaps more importantly, the Pro\(^8\) substitution confers equal or greater potency for Ca\(^{2+}\) mobilization in a species in which Pro\(^8\)-OT is the native ligand.

These binding and signaling data provide a functional link between the genetic surveys of the OT system in NWM and the growing body of work comparing the behavioral effects of intranasal treatment with Pro\(^8\)-OT and Leu\(^8\)-OT in marmosets. Pro\(^8\)-OT, but not Leu\(^8\)-OT, enhances a variety of pair-mate-directed social approach behavior (Cavanaugh et al., 2014, 2018). Moreover, Pro\(^8\)-OT increases the amount of social behavior that an OT-treated marmoset receives from their mate and reduces sociosexual behavior directed toward individuals other than the pair-mate (Cavanaugh et al., 2014; Mustoe et al., 2015). Leu\(^8\)-OT does affect some social behavior in marmosets, but Leu\(^8\)-OT never enhances a social behavior that Pro\(^8\)-OT does not also enhance (Mustoe et al., 2018). The binding and signaling data
support these behavioral findings. Pro\(^8\)-OT not only bound to the marmoset OTR with greater affinity but was also modestly more potent at stimulating Ca\(^{2+}\) mobilization. Though it is unlikely that this difference in signaling between Pro\(^8\)-OT and Leu\(^8\)-OT is the only contributing factor to the behavioral differences between treatment with Pro\(^8\)-OT and Leu\(^8\)-OT in marmosets, it is likely at least one contributing factor.

These binding and signaling data also shed new light on the clade-wise surveys of the OXT, OXTR, and AVPR1A genes in NWM. First and foremost, our data help to explain the finding that social monogamy and the OTR coevolved in NWM (Ren et al., 2015; Vargas-Pinilla et al., 2015), with Pro\(^8\)-OT binding and Ca\(^{2+}\)signaling both enhanced in the socially monogamous species that expresses Pro\(^8\)-OT natively. Moreover, Ca\(^{2+}\) signaling was not reduced by the substitution of proline for leucine at the eighth position in OTRs from Leu\(^8\)-OT species. This suggests that the OTR is permissive for this substitution, providing a potential mechanism for the coevolution of Pro\(^8\)-OT and OTRs in NWM (Ren et al., 2015; Vargas-Pinilla et al., 2015). The single nucleotide substitution that produced Pro\(^8\)-OT may have had modest consequences for neurotransmission, and thus the OTR may have evolved to accommodate this substitution. There is also a relationship between social monogamy and variation in the AVP V1a receptor gene (AVPR1A). Interestingly, in one of the only Leu\(^8\)-OT NWM that exhibits social monogamy, the titi monkey, Leu\(^8\)-OT and AVP bound the OTR with similar affinity. These genetic and signaling data suggest that interrogation of the NWM AVP receptors (V1aR, V1bR, V2R) may provide new insights into nonapeptide signaling in primates, and these studies are currently in progress.

Alongside the work of Parreiras-e-Silva and colleagues (Parreiras-E-Silva et al., 2017), this paper constitutes a “first look” at the characteristics of the marmoset and titi monkey OTRs when bound to the Pro\(^8\)-OT variant. As such we only explored two facets of GPCR function: ligand binding and Ca\(^{2+}\) signaling. Other characteristics of these receptors, such as differential
coupling to specific Go subunits or bias for G proteins vs. β-arrestin, are beyond the scope of this project, but are nonetheless interesting future directions. The OTR is capable of coupling to a variety of Go subunits resulting in a variety of cellular outcomes (see Gimpl and Fahrenholz, 2001; Mustoe et al., 2018 for detailed reviews), and there is a need and a value to the production and characterization of ligands that are functionally selective at the OTR as tools to target specific signaling cascades. Indeed, even relatively small modifications to the OT ligand can alter the functional selectivity at the OTR, causing it to couple to different Go subunits (Busnelli et al., 2012), and it is already known that Pro⁸-OT is less efficacious than Leu⁸-OT at promoting β-arrestin recruitment and internalization at the human receptor (Parreiras-E-Silva et al., 2017). It is possible that Pro⁸-OT and Leu⁸-OT may differentially promote coupling to specific Go subunits or bias signaling via G proteins vs. β-arrestin in marmosets and titi monkeys as well, and these experiments may provide more insight into the evolution of this system in NWM. Another interesting possibility is that the OTRs may form dimers with various other GPCRs, and the Leu⁸-OT and Pro⁸-OT variants might exhibit selectivity for binding or activating one of these dimers vs. another. Such dimer selectivity would not be detected in these assays with only the OTR expressed. Thus multiple possible explanations for the ligand variation and its correlations with GPCR signaling and behavior remain to be explored.

A final potentially important outcome of these studies is that the higher binding affinity of Pro⁸-OT vs. Leu⁸-OT at OTRs from all species, including human, should presumably make Pro⁸-OT a better ligand for future binding studies, in either a radio-labelled or fluorescently tagged form. The 3-fold higher binding affinity would allow the use of 3-fold lower concentrations of the ligand to achieve the same fractional receptor occupancy, thus decreasing the amount of ligand required and the corresponding cost and usage of the ligand. The tighter binding of the Pro⁸-OT variant to the OTR may be useful in other contexts as well.
Acknowledgements

We thank Dr. Dongren Ren for constructing the Titi monkey plasmid and Dr. Emily Harrison and Dr. Sara Freeman for assistance during the initial stages of this project. We also thank Dr. Thomas Murray, Dr. Marsha Pierce, and Dr. Aaryn Mustoe for their input during the planning of this project.
Authorship Contributions

Participated in research design. JHT, NAS, JAF, and MLT

Conducted experiments: JHT and NAS

Performed Data Analysis: JHT, NAS, and MLT

Wrote or contributed to the writing of the manuscript: JHT, NAS, JAF, and MLT
References

Lockard MA, Ebert MS, and Bargmann CI (2016) Oxytocin mediated behavior in invertebrates: An evolutionary perspective. Dev Neurobiol n/a-n/a.

Footnotes

This work was supported by the National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development [HD089147] and the University of Nebraska at Omaha’s Graduate Research and Creative Activity Award [Title: “Functional Characteristics of Four Primate Oxytocin Receptors: Relationships to Biparental Care and Social Monogamy”]
Legends for Figures

Figure 1. Representative saturation assays for 125I-OVTA binding to oxytocin receptors from each of the four species. Cells on 96-well plates were incubated on ice in 50 µL binding medium with the indicated concentrations of 125I-OVTA for 3 hours, and specific binding was then quantified. Data are from a single experiment with all four receptors tested side-by-side in triplicate. Values for this experiment are in good agreement with the average values in Results and Table 1: Human, $B_{\text{max}} = 9.7$ fmol/well, $K_d = 0.12$ nM; Macaque, $B_{\text{max}} = 6.9$ fmol/well, $K_d = 0.144$ nM; Marmoset (R10), $B_{\text{max}} = 34$ fmol/well, $K_d = 0.30$ nM; and Titi, $B_{\text{max}} = 30$ fmol/well, $K_d = 0.24$ nM.

Figure 2. Competition curves for Pro8-OT and Leu8-OT for each primate species OTR. Increasing concentrations of competitor ligand (Pro8-OT, Leu8-OT, AVP) were added to a constant concentration of 125I-OVTA in intact CHO cells expressing one of four primate OTRs. All values are expressed as the percentage of the maximal binding in the absence of OT or AVP.

Figure 3. Intracellular Ca$^{2+}$ increases for each primate species OTR. Increasing concentrations of Pro8-OT, Leu8-OT, or AVP were used to stimulate intracellular Ca$^{2+}$ mobilization in CHO cells expressing one of four primate oxytocin receptors. All values are expressed as the percentage of the maximal response to 10^{-6} M Leu8-OT for each species.
Table 1. Representative primate species OTRs

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Macaque</th>
<th>Marmoset</th>
<th>Titi Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineage (Family)</td>
<td>Old World (Hominidae)</td>
<td>Old World (Cercopithecidae)</td>
<td>New World (Callitrichidae)</td>
<td>New World (Pithecidae)</td>
</tr>
<tr>
<td>Breeding System</td>
<td>Monogamous</td>
<td>Polygamous</td>
<td>Monogamous</td>
<td>Monogamous</td>
</tr>
<tr>
<td>Native OT Ligand</td>
<td>Leu8-OT</td>
<td>Leu8-OT</td>
<td>Pro8-OT</td>
<td>Leu8-OT</td>
</tr>
</tbody>
</table>
Table 2. Binding affinities for ligands at various primate OTRs

<table>
<thead>
<tr>
<th>OTR</th>
<th>125I-OVTA K_d (± SEM), nM</th>
<th>K_i (± Log SEM), nM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pro8-OT</td>
</tr>
<tr>
<td>Human (n=3)</td>
<td>0.161 (0.019)</td>
<td>22.78 (0.10)*</td>
</tr>
<tr>
<td>Macaque (n=3)</td>
<td>0.199 (0.036)</td>
<td>43.36 (0.07)</td>
</tr>
<tr>
<td>Marmoset (n=5; n=6)</td>
<td>0.481 (0.041)</td>
<td>81.31 (0.11)</td>
</tr>
<tr>
<td>Titi Monkey (n=3)</td>
<td>0.289 (0.031)</td>
<td>146.9 (0.11)*</td>
</tr>
</tbody>
</table>

Note. * Indicates a significant within-species difference compared to Leu8-OT using a Bonferroni-corrected cutoff of $p < .0167$. # Indicates a significant within-species difference compared to Pro8-OT using a Bonferroni-corrected cutoff of $p < .0167$.
Table 3. Ca$^{2+}$ mobilization potencies for ligands at various primate OTRs

<table>
<thead>
<tr>
<th>OTR (n=3)</th>
<th>Ca$^{2+}$ EC$_{50}$ (± Log SEM), nM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pro$_6$-OT</td>
<td>Leu$_6$-OT</td>
<td>AVP</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>0.072 (0.12)</td>
<td>0.127 (0.10)</td>
<td>0.864 (0.07)*</td>
<td>#</td>
</tr>
<tr>
<td>Macaque</td>
<td>1.341 (0.11)</td>
<td>2.025 (0.11)</td>
<td>7.981 (0.12)*</td>
<td>#</td>
</tr>
<tr>
<td>Marmoset</td>
<td>0.115 (0.15)</td>
<td>0.176 (0.14)</td>
<td>0.459 (0.14)</td>
<td>#</td>
</tr>
<tr>
<td>Titi Monkey</td>
<td>0.595 (0.09)</td>
<td>1.010 (0.09)</td>
<td>4.821 (0.09)*</td>
<td>#</td>
</tr>
</tbody>
</table>

Note. * Indicates a significant within-species difference compared to Leu$_6$-OT using a Bonferroni-corrected cutoff of p < .0167. # Indicates a significant within-species difference compared to Pro$_6$-OT using a Bonferroni-corrected cutoff of p < .0167.
Table 4. Coupling efficiencies for ligands at various primate OTRs

<table>
<thead>
<tr>
<th>OTR</th>
<th>Potency/Affinity ratio -Log(Ca^{2+}IC_{50}/Ki)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro^8-OT</td>
<td>Leu^8-OT</td>
</tr>
<tr>
<td>Human</td>
<td>2.51</td>
</tr>
<tr>
<td>Macaque</td>
<td>1.51</td>
</tr>
<tr>
<td>Marmoset</td>
<td>2.85</td>
</tr>
<tr>
<td>Titi Monkey</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AVP</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>3.38</td>
</tr>
<tr>
<td></td>
<td>2.60</td>
</tr>
</tbody>
</table>
Figures

Figure 1.
Figure 2.
Figure 3.