FUNDAMENTAL LAWS OF CHEMISTRY

Lavoisier’s Fundamental Laws of Chemistry
- Father of Modern Chemistry
- Late 18th century French aristocrat
- Guillotined during the French Revolution.

1. **Law of Mass Conservation**
 - In any chemical processes, matter cannot be created or destroyed.

2. **Law of Definite Composition**
 - A chemical compound always has the same mass composition regardless of its source.

Dalton’s Atomic Theory
- Early 19th century British scientist

1. All matter is made of indivisible atoms.

2. **Elements** are made of one type of atom.
 - All atoms have the same chemical and physical properties (mostly).

3. Compounds are made of atoms in fixed proportions.
 - Can’t use $\frac{1}{2}$ of an atom to make a compound.
 - Also stated as **Law of Multiple Proportions**.

4. Atoms change arrangement in a chemical reaction, not identity.

Law of Multiple Proportions

When two elements combine to form two or more compounds, the ratio formed from each compound’s mass ratio always yields a fraction.

- In other words, elements cannot combine together with random compositions. The number of atoms of each element in a compound must be a whole number.
Example: Consider two compounds of sulfur and oxygen.

Compound A has a mass composition of
49.9% oxygen and 50.1% sulfur.

Compound B has a mass composition of
59.9% oxygen and 40.1% sulfur.

The oxygen to sulfur ratio for compound A is
\[\frac{49.9}{50.1} = 0.9960 \]

The oxygen to sulfur ratio for compound B is
\[\frac{59.9}{40.1} = 1.494 \]

The law of multiple proportions says that a ratio of these ratios must yield a simple fraction.

\[\frac{0.9960}{1.494} = 0.6667 = \frac{2}{3} \]

Compound A has two-thirds the oxygen that compound B has. Modern analysis yields that compound A = SO₂ and compound B = SO₃.
ATOMIC STRUCTURE HISTORY

1897 – J.J. Thomson
- Discovered “cathode rays”
- Cathode rays were soon interpreted as beams of electrons.
- Thomson measured how the electrons were deflected by a magnetic field and calculated the charge to mass ratio (e/m).
- Thomson used his findings to construct the “plum pudding” model of the atom.
- Won Nobel Prize in 1906

1909 – Robert Milliken
- Milliken found that tiny drops of oil charged with static electricity had only discrete values of charge based on their deflection by an electric field.
- Milliken measured the fundamental unit of charge to be 1.6×10^{-19} Coulombs. (Based on Thomson’s experiments, he also measured the mass of the electron to be 9×10^{-31} kilograms.
- Won Nobel Prize in 1923

1910 – Ernest Rutherford
- Aimed a beam of alpha particles (⁴He nuclei) at a thin gold sheet.
- Most particles went right through the sheet.
 - a little surprising!
- Some particles deflected backwards
 - very surprising!!!
 - Rutherford said, "It was almost as incredible as if you fired a 15 inch shell at a piece of tissue paper and it came back and hit you!"
- Results were interpreted as the atom having a very small, yet very heavy nucleus.
- Won Nobel Prize in 1908
ATOMIC STRUCTURE

Two components of an atom

Nucleus (pl. nuclei)
- composite particle
- size $\approx 10^{-15}$ m $= 10^{-5}$ Å
- positively charged
 - SI units multiples of 1.609×10^{-19} C
 - atomic units $+1, +2, +3, \ldots, +116$
- mass varies from 1.7×10^{-27} to 5×10^{-25} kg
 - 1 amu to 293 amu
- contains almost all the mass of an atom
- occupies very small volume in the atom

Electrons $-e^-$
- fundamental particle of nature
- size unknown $r < 10^{-18}$ m
- negatively charged
 - SI units -1.609×10^{-19} C
 - atomic units -1
- mass
 - SI units 9.109×10^{-31} kg
 - atomic units 5.486×10^{-4} amu
- movement of electron occupies the size of the atom ≈ 1 Å $= 10^{-10}$ m

NUCLEAR STRUCTURE

Two components of nucleus

Proton – p^+
- size $\approx 10^{-15}$ m $= 10^{-5}$ Å
- charge $+1$ (atomic units)
- mass 1.673×10^{-27} kg $= 1.0073$ amu
- number of p^+ defines element

Neutron – n^0
- size $\approx 10^{-15}$ m $= 10^{-5}$ Å (same as proton)
- charge 0 (atomic units)
- mass 1.675×10^{-27} kg $= 1.0087$ amu
- number of n^0 defines isotope of element

ATOMIC STRUCTURE HISTORY continued

1932 – James Chadwick
- Showed that atoms have a third particle different than the electron and proton.
- Aimed a beam of alpha particles (4He nuclei) at a sheet of beryllium to produce uncharged particles.
- Interacting these uncharged particles with other nuclei showed that they must have approximately the same mass as a proton.
- Won Nobel Prize in 1935

Definition: **1 Angstrom (Å) = 10^{-10} m**
ATOMIC SYMBOLS - A_ZSy

Atomic Number - Z
- number of protons in an atom
- subscript before elemental symbol

Mass Number – A
- number of protons and neutrons in an atom
- superscript before elemental symbol
- mass number approximates how heavy the atom is in atomic mass units

Examples

Oxygen – 16 has 8 p^+ and 8 n^o ⇒

<table>
<thead>
<tr>
<th>element</th>
<th># of p^+</th>
<th># of n^o</th>
<th>mass #</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygen</td>
<td>8</td>
<td>9</td>
<td>17</td>
<td>$^{17}_{8}$O</td>
</tr>
<tr>
<td>oxygen</td>
<td>8</td>
<td>10</td>
<td>18</td>
<td>$^{18}_{8}$O</td>
</tr>
<tr>
<td>carbon</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>$^{12}_{6}$C</td>
</tr>
<tr>
<td>carbon</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>$^{14}_{6}$C</td>
</tr>
<tr>
<td>lead</td>
<td>82</td>
<td>126</td>
<td>208</td>
<td>$^{208}_{82}$Pb</td>
</tr>
</tbody>
</table>

Definition: **isotope** – an atom with the same atomic number as another atom but a different mass number.
- i.e., isotopes have the same number of protons but a different number of neutrons.
- isotopes have the same chemical properties.

Notes:
- oxygen – 16 and oxygen – 18 are **isotopes** of oxygen
- carbon – 12 and carbon – 14 are isotopes of carbon
- nuclide refers to specific nucleus, often used interchangeably with isotope

DEFINITION OF ATOMIC MASS UNIT

Mass of 12C is 12.000000 amu **BY DEFINITION**
1 amu = 1.66 x 10^{-27} kg
amu also abbreviated as u ⇒ 1 amu = 1 u

For atomic masses, amu is much more convenient unit than kilograms.

\[m(^{1}H) = 1.6737 \times 10^{-27} \text{ kg} = 1.0079 \text{ amu} \]
\[m(^{14}N) = 2.3253 \times 10^{-26} \text{ kg} = 14.004 \text{ amu} \]
\[m(^{56}Fe) = 9.2882 \times 10^{-26} \text{ kg} = 55.935 \text{ amu} \]
MASS SPECTROMETRY
- Modern method for measuring masses of atoms (or molecules)
- Sample of atoms (or molecules) is vaporized and ionized by hitting it with an electron beam
- Ionized atoms travel into a region with a magnetic field
- The magnetic field causes the path of the gaseous ion to curve
- The amount of curvature for the path depends on the charge and the mass
- Since the charge is fairly easy to guess (usually either +1 or +2), the curvature of the path yields the mass of the atom.

- Mass spectroscopy yields information about isotopic abundances as well as precise masses.

- Rubidium has two naturally occurring isotopes (85Rb, 72% and 87Rb, 28%).

- Tin has ten(!) naturally occurring isotopes (from 112Sn to 124Sn).
ATOMIC AND MOLECULAR MASSES

Average Atomic Mass (also Atomic Weight)
- If element has more than one naturally occurring isotope, atomic mass is an average of the mass of the isotopes.
- Average is performed accounting for the relative natural abundance of each isotope.

Example: Copper

<table>
<thead>
<tr>
<th>nuclide</th>
<th>abundance</th>
<th>mass(amu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{63}Cu</td>
<td>69.17%</td>
<td>62.940</td>
</tr>
<tr>
<td>^{65}Cu</td>
<td>30.83%</td>
<td>64.928</td>
</tr>
</tbody>
</table>

\[m(\text{Cu}) = 0.6917 \times 62.940 \, \text{amu} + 0.3083 \times 64.928 \, \text{amu} = 63.55 \, \text{amu} \]

Example: Neon

<table>
<thead>
<tr>
<th>nuclide</th>
<th>abundance</th>
<th>mass(amu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{20}Ne</td>
<td>90.48%</td>
<td>19.992</td>
</tr>
<tr>
<td>^{21}Ne</td>
<td>0.27%</td>
<td>20.994</td>
</tr>
<tr>
<td>^{22}Ne</td>
<td>9.25%</td>
<td>21.991</td>
</tr>
</tbody>
</table>

\[m(\text{Ne}) = 0.9048 \times 19.992 \, \text{amu} + 0.0027 \times 20.994 \, \text{amu} + 0.0925 \times 21.991 \, \text{amu} = 20.18 \, \text{amu} \]

PERIODIC TABLE OF GROUPS OF ELEMENTS
Two different classification schemes

Metal – Nonmetal Scheme (based on physical properties)

Metals
- characteristics of metals
 - **luster** (shine)
 - high electrical conductivity
 - high heat conductivity
- Ions are generally positively charged.
- Elements on left side of periodic table are metals.

Nonmetals
- characteristics of nonmetals
 - poor electrical conductivity (insulator)
 - poor heat conductivity (insulator)
- Ions are generally negatively charged.
- Elements in the upper right corner of table are nonmetals.

Metalloids
- in between metal and nonmetal
- B, Si, Ge, As, Sb, Te, At
Group Scheme (based on chemical properties)

Alkali metals – column 1A (Ashes w/out air)
 Li, Na, K, Rb, Cs, Fr

Alkaline earth metals – column 2A
 Be, Mg, Ca, Sr, Ba, Ra

Pnictogens – column 5A (Choke maker)
 N, P, As, Sb, Bi

Chalcogens – column 6A (Ore maker)
 O, S, Se, Te, Po

Halogens – column 7A (Salt maker)
 F, Cl, Br, I, At

Noble gases – column 8A
 He, Ne, Ar, Kr, Xe, Rn

Transition metals – four rows in middle of table
 Ex: Sc to Zn, Y to Cd, La to Hg, Ac to Mt(109)

Rare earths – bottom two rows beside table
 Ex: Ce to Lu, Th to Lr

Members of groups have similar chemical properties.

CHEMICAL COMPOUNDS

Chemical compounds consist of
 1.) molecules
 2.) ions

Molecular Compounds
 - tightly bound atoms in a single unit
 - atoms held together with **covalent** bonding
 - Electrons accumulate between nuclei and draw nuclei together.
 - **hydrocarbons** – compounds with only carbon and hydrogen.

Molecular Elements
 - gases: H₂, N₂, O₂, F₂, Cl₂ (**diatomic**)
 - liquid: Br₂
 - solids: P₄, S₈, Se₈, I₂

Molecular Formula
 - indicates which elements are incorporated in molecule using elemental symbols
 - indicates number of atoms within a molecule using subscripts after elemental symbols
Examples:
- water
 \[\text{H}_2\text{O} \]
- ammonia
 \[\text{NH}_3 \]

EMPIRICAL FORMULA
- lowest integer ratios between atoms

Examples:
- hydrogen peroxide
 molecular formula: \(\text{H}_2\text{O}_2 \)
 empirical formula: \(\text{HO} \)
- octane
 molecular formula: \(\text{C}_8\text{H}_{18} \)
 empirical formula: \(\text{C}_4\text{H}_9 \)
- sodium nitrate
 molecular formula: \(\text{NaNO}_3 \)
 empirical formula: \(\text{NaNO}_3 \)
- glucose
 molecular formula: \(\text{C}_6\text{H}_{12}\text{O}_6 \)
 empirical formula: \(\text{CH}_2\text{O} \)

Ions and Ionic Compounds

Ions
- Neutral atoms have equal number of electrons and protons
- Anions gain \(e^- \) and become negatively charged
 \[\text{Cl} + e^- \rightarrow \text{Cl}^- \]
- Cations lose \(e^- \) and become positively charged
 \[\text{Na} - e^- \rightarrow \text{Na}^+ \]
 \[\text{Cu} \rightarrow \text{Cu}^{2+} + 2e^- \]
- Metals generally become cations and nonmetals may become anions

Molecules that gain or lose \(e^- \) are called polyatomic ions

\(\text{NO}_3^-, \text{CO}_3^{2-}, \text{NH}_4^+ \)

IMPORTANT: Polyatomic ions remain whole in ionic reactions, i.e. they do not break apart.
Predicting ionic charges
- charges of some ions can be predicted using periodic chart
- *most charges have to be memorized*

Alkali metals: Li, Na, K, Rb, Cs 1+
Alkaline earth metals: Be, Mg, Ca, Sr, Ba 2+
Chalcogens: O, S, Se, Te 2-
Halogens: F, Cl, Br, I 1-

- the tendency is for atoms to gain or lose e\(^{-}\) until the number of e\(^{-}\) is like a noble gas.

Ionic Compounds
Ions held together by ionic bonding.
- Opposite charges attract each other.

All compounds are electrically neutral.

Charges on an **ionic compound must balance** to be neutral.

Examples: KCl

\[
\text{K}^+ \quad \text{Cl}^- \quad \Rightarrow \quad \text{K}^+ \quad \text{Cl}^-
\]

Li\(_2\)S

\[
\text{Li}^+ \quad \text{Li}^- \quad \text{S}^{2-} \quad \Rightarrow \quad \text{Li}^+ \quad \text{S}^{2-} \quad \text{Li}^+
\]

MgBr\(_2\)

\[
\text{Mg}^{2+} \quad \text{Br}^- \quad \text{Br}^- \quad \Rightarrow \quad \text{Br}^- \quad \text{Mg}^{2+} \quad \text{Br}^-
\]

Fe\(_2\)O\(_3\)

\[
\text{Fe}^{3+} \quad \text{Fe}^{3+} \quad \text{O}^{2-} \quad \text{O}^{2-} \quad \text{O}^{2-} \quad \Rightarrow \quad \text{O}^{2-} \quad \text{Fe}^{3+} \quad \text{O}^{2-} \quad \text{Fe}^{3+} \quad \text{O}^{2-}
\]

Note: Ions do not form molecules, rather they form crystal lattices
NOMENCLATURE
Nomenclature of ions

Cations (positive)
- name of ion is same as metal
- with main group metals, Roman numerals are used to indicate the charge of the ion only if the metal can have more than one charge.
 Ex: Mg^{2+} ⇒ magnesium
 Al^{3+} ⇒ aluminum
 Sn^{4+} ⇒ tin(IV)
 Tl^+ ⇒ thallium(I)
- with transition metals, the charge of cation is indicated with Roman numerals
 Ex: Fe^{2+} ⇒ iron(II)
- many transition metals have only one common charge; thus, using the roman numeral is optional.
 - Sc^{3+}, Ni^{2+}, Zn^{2+}, Ag^+, Cd^{2+}, La^{3+}
- polyatomic cations are given –ium suffix
 Ex: NH_4^+ ⇒ ammonium

Anions (negative)
- monatomic anions have –ide suffix
 Ex: Cl^- ⇒ chloride
 S^{2-} ⇒ sulfide
 As^{3-} ⇒ arsenide

exceptions
- OH^- hydrogenide
- CN^- cyanide
- O_2^{2-} peroxide
Note: peroxides form usually with only alkali and alkaline earth metals.

- polyatomic ions with oxygen (oxyanions) have –ite or –ate suffix
 - ite is always one less oxygen than -ate
 Ex: SO_4^{2-} sulfate
 SO_3^{2-} sulfite
 Ex: ClO_4^- perchlorate
 ClO_3^- chlorate
 ClO_2^- chlorite
 ClO^- hypochlorite
NAMING IONIC COMPOUNDS

1. Write name of cation first (include Roman numeral, if necessary).
2. Write name of anion.

Binary Compounds

Example: NaI
Na$^+$ is metal ion and I$^-$ is nonmetal ion
NaI \Rightarrow sodium iodide

Example: SrBr$_2$
Sr$^{2+}$ is metal ion and Br$^-$ is nonmetal ion
SrBr$_2$ \Rightarrow strontium bromide

Example: FeCl$_3$
Fe$^{3+}$ is metal ion and Cl$^-$ is nonmetal ion
FeCl$_3$ \Rightarrow iron(III) chloride

BaH$_2$ \Rightarrow
magnesium chloride \Rightarrow
lithium oxide \Rightarrow

Cation-Polyatomic Anion Compounds

NaNO$_3$ \Rightarrow Na$^+$ and NO$_3^-$ \Rightarrow sodium nitrate
Fe(C$_2$H$_3$O$_2$)$_2$ – iron(II) acetate

aluminum cyanide –
barium sulfite –
ammonium oxalate –
KMnO$_4$ \Rightarrow
CoS$_2$O$_3$ \Rightarrow
NAMING MOLECULAR COMPOUNDS

1. Write the name of the element that is farthest from upper right-hand corner first.
2. Indicate number of atoms with numerical prefix.
 1 – mono **
 2 – di
 3 – tri
 4 – tetra
 5 – penta
 6 – hexa
 7 – hepta
 8 – octa
 9 – nono
 10 – deca

**use of the mono prefix is not preferred, except for carbon monoxide.
3. Add name of second element with –ide suffix.
4. Indicate number of atoms with numerical prefix.
5. Note: No numerical prefixes with hydrogen.
6. Important exceptions to rules
 a) H₂O – water
 b) NH₃ – ammonia
 c) CH₄ – methane
 - Hydrocarbons and their derivatives have their own nomenclature system.

Examples
 N₂O ⇒
 P₂S₃ ⇒
 boron trifluoride
 carbon tetrachloride ⇒

A BRIEF INTRODUCTION TO ACIDS

- By definition, acids dissolve in water and increase H⁺ concentration.

Example: HCl (aq) → H⁺ (aq) + Cl⁻ (aq)
- note ions separate from each other

- Cation of an acid is always hydrogen, H⁺.
- Acids generally dissolve metals.
- Concentrated acids dissolve skin and flesh.
 - Stomach acid is a concentrated acid (hydrochloric acid).
- Acids taste sour.
 - Vinegar is a weak acid (acetic acid).
- Technically, if a substance is not dissolved in water, it is not an acid. (This can be a source of confusion sometimes.)
NOMENCLATURE OF ACIDS

Binary acids H\text{_}X
1. Write the prefix hydro-
2. Write the name of nonmetal anion with –ic suffix
3. Add the word acid

Examples

\begin{align*}
\text{HBr} & \Rightarrow \\
\text{HF} & \Rightarrow \\
\text{hydroiodic acid} & \Rightarrow \\
\text{hydrotelluric acid} & \Rightarrow \\
\end{align*}

Note: prefix hydro- implies a binary acid.
Exception: hydrocyanic acid \Rightarrow HCN

Oxyacids
1. Write the name of the anion
2. Change suffix
 a) change – ate to –ic
 b) change – ite to –ous
3. Add word acid

Examples:

\begin{align*}
\text{HClO}_2 & \Rightarrow \text{Chlorite anion} \Rightarrow \text{Chlorous acid} \\
\text{H}_2\text{C}_2\text{O}_4 & \Rightarrow \text{Oxalate anion} \Rightarrow \text{Oxalic acid} \\
\text{Sulfurous acid} & \Rightarrow \text{sulfite anion} \Rightarrow \text{H}_2\text{SO}_3 \\
& \quad \text{- note 2 H+ since SO}_3^2- \text{ has 2- charge} \\
\text{Nitric acid} & \Rightarrow \text{nitrate anion} \Rightarrow \\
\text{Phosphoric acid} & \Rightarrow \text{phosphate anion} \Rightarrow \\
\text{HBrO}_3 & \Rightarrow \\
\text{HNO}_2 & \Rightarrow \\
\end{align*}

NOMENCLATURE OF HYDRATES
1. Name compound with previously stated rules.
2. At the end, add the word hydrate with the appropriate numerical prefix.

\begin{align*}
\text{FeCl}_3\bullet6\text{H}_2\text{O} & \Rightarrow \\
\text{calcium sulfate dihydrate} & \Rightarrow \\
\end{align*}