SKIP navigation
Department of Mathematics
Site Name Here

Zhenyuan Wang

Selected Publications

Referreed Journal Articles

49. Yan, N., Chen, Z., Shi, Y., Wang, Z., and Huang, G., Using non-additive measure for optimization-based nonlinear classification, American Journal of Operations Research 2(3) (2012), 364-373.

48. Yan, N., Chen, Z., Shi, Y., and Wang, Z., A nonlinear multiregression model based on the Choquet integral with a quadratic core, International Journal of Granular Computing, Rough Sets, and Intelligent Systems 2(3) (2012), 244-256.

47. Wang, J., Leung, K. S., Lee, K. H., Wang, Z., Wang, W., and Xu, J., Nonlinear integrals with polynomial kernel and its applications, International Journal of Intelligent Systems 27 (2012), 48-68.

46. Fang, H., Rizzo, M., Wang, H., Espy, K., and Wang, Z., A new nonlinear classifier with a penalized signed fuzzy measure using effective genetic algorithm, Pattern Recognition 43 (2010), 1393-1401.

45. Yang, R., Wang, Z., Heng P-A. and Leung, K-S., Fuzzified Choquet integral with fuzzy-valued integrand and its application on temperature prediction, IEEE T. SMCB 38, No. 2 (2008), 367-380.

44. Wang, Z., Li, W., Lee, K.H. and Leung, K-S., Lower integrals and upper integrals with respect to nonadditive set functions. Fuzzy Sets and Systems 159(6) (2008), 646-660.

43. Yang, R., Wang, Z., Heng P-A. and Leung, K-S., Classification of heterogeneous fuzzy data by Choquet integral with fuzzy-valued integrand, IEEE T. Fuzzy Systems 15, No.5 (2007), 931-942.

42. Wang, Z., Leung, K-S. and Klir, G.J., Integration on finite sets, International Journal of Intelligent Systems 21 (2006), 1073-1092.

41. Wang, Z., Yang, R., Heng P-A. and Leung, K-S., Real-valued Choquet integrals with fuzzy-valued integrand, Fuzzy Sets and Systems 157 (2006), 256-269.

40. Wang, Z., Leung, K-S. and Klir, G.J., Applying fuzzy measures and nonlinear integrals in data mining, (invited paper for 40 Anuv.). Fuzzy Sets and Systems 156 (2005), 371-380.

39. Yang, R., Wang, Z., Heng P-A. and Leung, K-S., Fuzzy numbers and fuzzification of Choquet integrals, Fuzzy Sets and Systems 153 (2005), 95-113.

38. Wang, Z., Xu, K., Heng, P-A. and Leung K-S., Indeterminate integrals with respect to nonadditive measures, Fuzzy Sets and Systems 138 (2003), 485-495.

37. Xu, K., Wang, Z., Heng, P-A. and Leung K-S., Classification by nonlinear integral projections, IEEE T. Fuzzy Systems 11, No. 2 (2003), 187-201.

36. Leung, K-S., Wong, M-L., Lam, W., Wang, Z. and Xu, K., Learning nonlinear multiregression networks based on evolutionary computation, IEEE T. SMC 32, No. 5 (2002), 630-644.

35. Xu, K., Wang, Z., Wong, M-K. and Leung K-S., Discover dependency pattern among attributes by using a new type of nonlinear multiregression, International Journal of Intelligent Systems 16 (2001), 949-962.

34. Wang, Z., Leung K-S., Wong, M-L., Fang, J. and Xu, K., Nonlinear nonnegative multi-regressions based on Choquet integrals, International Journal of Approximate Reasoning 25 (2000), 71-87.

33. Wang, Z., Leung K-S., Wong, M-L. and Fang, J., A new type of nonlinear integrals and the computational algorithm, Fuzzy Sets and Systems 112 (2000), 223-231.

32. Jiang, Q., Wang, S., Ziou, D., Wang, Z. and Klir, G.J., Pseudometric generating property and autocontinuity of fuzzy measures, Fuzzy Sets and Systems 112 (2000), 207-216.

31. Wang, Z., Leung, K-S. and Wang, J., Determining nonnegative monotone set functions based on Sugeno's integral: an application of genetic algorithms, Fuzzy Sets and Systems 112 (2000), 155-164.

30. Xu, K., Ke, Y. and Wang, Z., A fast algorithm for Choquet-integral-based nonlinear multiregression used in data mining, International Journal of Fuzzy Mathematics , 8, No. 1 (2000), 195-201.

29. Wang, Z., Leung, K-S. and Wang, J., A genetic algorithm for determining nonadditive set functions in information fusion (invited paper), Fuzzy Sets and Systems 102 (1999), 463-469.

28. Wang, Z., Xu, K., Wang, J. and Klir, G.J., Using genetic algorithms to determine nonnegative monotone set functions for information fusion in environments with random perturbation, International Journal of Intelligent Systems 14 (1999), 949-962.

27. Wang, Z., Klir, G.J. and Wang, J., Neural networks used for determining belief measures and plausibility measures, Intelligent Automation and Soft Computing 4, No. 4 (1998), 313-324.

26. Wang, W., Wang, Z. and Klir, G.J., Genetic algorithms for determining fuzzy measures from data, Journal of Intelligent & Fuzzy Systems 6, No. 2 (1998), 171-183.

25. Jiang, Q., Suzuki, H., Wang, Z. and Klir, G.J., Exhaustivity and absolute continuity of fuzzy measures, Fuzzy Sets and Systems 96 (1998), 231-238.

24. Wang, Z. and Klir G.J., PFB-integrals and PFA-integrals with respect to monotone set functions, International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems 5, No. 2 (1997) 163-175.

23. Wiang, J. and Wang, Z., Using neural networks to determine Sugeno measures by statistics, Neural Networks 10, No. 1 (1997), 183-195.

22. Wang, Z., Convergence theorems for sequences of Choquet integrals, International Journal of General Systems 26 (1997), 133-143.

21. Klir, G.J., Wang, Z. and Harmanec, D., Constructing fuzzy measures in expert systems, Fuzzy Sets and Systems 92 (1997), 251-264.

20. Wang, Z. and Klir, G.J., Choquet integrals and natural extensions of lower probabilities, International Journal of Approximate Reasoning 16 (1997), 137-147.

19. Li, J., Yesuda, M., Jiang, Q., Suzuki, H., Wang, Z. and Klir, G.J., Convergence of sequence of measurable functions on fuzzy measure spaces, Fuzzy Sets and Systems 87 (1997), 317-323.

18. Wang, Z., Wang, W. and Klir, G.J., Pan-integrals with respect to imprecise probabilities, International Journal of General Systems 25, No. 3 (1996), 229-243.

17. Wang, Z., Constructing nonadditive set functions in systems, Journal of Hebei University 16, No. 3 (1996), 44-47.

16. Wang, W., Klir, G.J. and Wang, Z., Constructing fuzzy measures by rational transformations, International Journal of Fuzzy Mathematics 4, No.3 (1996), 665-675.

15. Jiang, Q., Klir, G.J. and Wang, Z., Null-additive fuzzy measures on S-compact spaces, International Journal of General Systems 25, No. 3 (1996), 219-228.

14. Klir, G.J., Wang, Z. and Wang, W., Constructing fuzzy measures by transformations, International Journal of Fuzzy Mathematics 4, No. 1 (1996), 207-215.

13. Wang, Z., Klir, G.J. and Wang, W., Fuzzy measures defined by fuzzy integral and their absolute continuity, Journal of Mathematical Analysis and Applications 203 (1996), 150-165.

12. Wang, Z., Klir, G.J. and Wang, W., Monotone set functions defined by Choquet integral, Fuzzy Sets and Systems 81 (1996), 241-250.

11. Harmanec, D., Klir, G.J. and Wang, Z., Modal logic interpretation of Dempster-Shafer theory: an infinite case, International Journal of Approximate Reasoning 14, No. 2/3 (1996), 81-93.

10. Jiang, Q. and Wang, Z., Property (p.g.p.) of fuzzy measures and convergence in measure, International Journal of Fuzzy Mathematics 3, No. 3 (1995), 699-710.

9. Wang, Z., Klir, G.J. and Harmanec, D., The preservation of structural characteristics of monotone set functions defined by fuzzy integral, International Journal of Fuzzy Mathematics 3, No. 1 (1995), 229-240.

8. Wang, Z., On the null-additivity and the autocontinuity of fuzzy measures, Fuzzy Sets and Systems 45 (1992), 223-226.

7. Wang, Z., Structural characteristics of fuzzy measure on S-compact spaces, International Journal of General Systems 17 (1990), 309-316.

6. Sims, J.R. and Wang, Z., Fuzzy measures and fuzzy integrals: an overview, International Journal of General Systems 2-3 (1990), 157-189.

5. Wang, Z., Absolute continuity and the extension of fuzzy measures, Fuzzy Sets and Systems 36 (1990), 395-399.

4. Wang, Z. and Li, S., Fuzzy linear regression analysis of fuzzy-valued variables, Fuzzy Sets and Systems 35 (1990), 125-136.

3. Wang, Z. and Qiao, Z., Transformation theorems for fuzzy integrals on fuzzy sets, Fuzzy Sets and Systems 34 (1990), 355-364.

2. Wang, Z., Asymptotic structural characteristics of fuzzy measures and their applications, Fuzzy Sets and Systems 16 (1985), 277-290.

1. Wang, Z., The autocontinuity of set function and the fuzzy integral, Journal of Mathematical Anaysis and Applications 99 (1984), 195-218.


Textbooks

3. Wang, Z., Yang, R., and Leung, K. S., Nonlinear Integrals and Their Applications in Data Mining, World Scientific, Singapore (2010).

2. Wang, Z. and Klir, G.J., Generalized Measure Theory, Springer, New York (2008).

1. Wang, Z. and Klir, G.J., Fuzzy Measure Theory, Plenum Press, New York (1992).


Invited Articles, Unreferreed Journal Articles, and Referreed Conference Papers

82. Wang, Z. and Zhang-Westman, L., The cardinality of the set of all fuzzy numbers, Proc. IFSA2013, 1045-1049.

81. Zhang-Westman, L. and Wang, Z., Ranking fuzzy numbers by their left and right wingspans, Proc. IFSA2013, 1039-1044.

80. Guo, B., Wang, Z., and Zhang-Westman, L., On pseudo gradient search for solving nonlinear multiregression with the Choquet integral. Proc. IFSA2013, pp. 986-991.

79. Yang, R. and Wang, Z., Generalized nonlinear classification model based on cross-oriented Choquet integrals, Proc. 8th International Conference MLDM, Berlin, Germany 2012, 26-39.

78. Wang, Z., Aggregation tools in data mining—from the Lebesgue integral to the Choquet integral, Proc. 3rd International Symposium on Dataology and Data Science, 2012, 18-19.

77. Wang, Z., Yan, N., Chu, J., and Shi, Y., A nonlinear multiregression model based on the Choquet integral for analyzing the course records, in Emerging Computation and Information Technologies for Education, (Mao, E., Xu, L., and Tian, W. Eds.) Springer (2012), 309-319.

76. Wang, Z., Nonlinear integrals and their Applications in information fusion and data mining, Proc. 2nd International Symposium on Dataology and Data Science, 2011, 32-33.

75. Wang, Z., Yang, R., and Shi, Y., A new nonlinear classification model based on cross-oriented Choquet integrals, Proc. icist 2011, 176-181.

74. Chu, J., Wang, Z., and Shi, Y., Analysis to the contributions from feature attributes in nonlinear classification based on the Choquet integral, Proc. IEEE 2010 GrC, 677-682.

73. Yan, N., Chen, Z., Shi, Y., and Wang, Z., A nonlinear multiregression model based on the Choquet integral with a quadratic core, Proc. IEEE 2010 GrC, 574-579.

72. Zhang, W., Chen, W., and Wang, Z., On the uniqueness of the expression for the Choquet integral with linear core in classification, Proc. IEEE GrC 2009, 769-774.

71. Guo, B., Chen, W., and Wang, Z., Pseudo Gradient Search for Solving Nonlinear Multiregression Based on the Choquet Integral, Proc. IEEE GrC 2009, 180-183.

70. Wang, Z., Lee, K-H. and Leung, K-S., The Choquet integral with respect to fuzzy-valued signed efficiency measures, WCCI 2008 , 2143-2148.

69. Wu, Y. and Wang, Z., Using 2-Interactive Measures in Nonlinear Classifications , Proc. NAFIPS'07 (2007), 248-353.

68. Wang, H., Fang, H., Sharif, H. and Wang, Z., Nonlinear Classification by Genetic Algorithm with Signed Fuzzy Measure, Proc. FUUZ/IEEE 2007.

67. Jumadinova, J. and Wang, Z., The pseudo gradient search and a penalty technique used in classifications , Proc. 10th Joint Conference on Information Sciences , 2007, 1419-1426.

66. Wang, Z. and Klir, G.J., Coordination Uncertainty of Belief Measures in Information Fusion, in Analysis and Design of Intelligent Systems Using Soft Computing Techniques (Patricia Melin, Oscar Castillo, Eduardo Gomez Ramirez, Janusz Kacprzyk, and Witold Pedrycz eds.) — Proc. IFSA 2007 , 530-538.

65. Liu, M., Wang, Z. and Guo, H-F., Nonlinear multiregressions involving unknown periodic variation, accepted by IASTED ISC 2006.

64. Mahasukhon, P., Sharif, H. and Wang, Z., Using pseudo gradient search for solving nonlinear multiregression based on 2-additive measures, Proc. IEEE IRI 2006 , 410-413.

63. Yan, N., Wang, Z., Shi, Y. and Chen, Z., Nonlinear classification by linear programming with signed fuzzy measuires, Proc. FUZZIEEE 2006 , 1484-1489.

62. Bock, L.S. and Wang, Z., Using 2-additive measures in nonlinear multiregressions, Proc. IEEE GrC 2006 , 639-642.

61. Wang, Z. and Leung, K.S., Uncertainty carried by fuzzy measures in aggregation, Proc. IPMU 2006 , 105-112.

60. Zong, T., Shi, P. and Wang, Z., Nonlinear integrals with respect to superadditive fuzzy measures on finite sets, Proc. IPMU 2006 , 2456-2463.

59. Wang, H., Sharif, H. and Wang, Z., A new classifier based on genetic algorithm, Proc. IPMU 2006 , 2479-2484.

58. Deng, X. and Wang, Z., A fast iterative algorithm for identifying feature scales and signed fuzzy measures in generalized Choquet integrals, Proc. FUZZ - IEEE 2005 , 85-90.

57. Wang, Z., Yang, R. and Leung, K-S., On the Choquet integral with fuzzy-valued integrand, Proc. IFSA 2005 , 433-437.

56. Spilde, M. and Wang, Z., Solving nonlinear optimization problems based on Choquet integrals by using a soft computing technique, Proc. IFSA 2005 , 450-454.

55. Hui, J. and Wang, Z., Nonlinear multiregressions based on Choquet integral for data with both numerical and categorical attributes, Proc. IFSA 2005 , 445-449.

54. Deng, X. and Wang, Z., Learning probability distributions of signed fuzzy measures by genetic algorithm and multiregression, Proc. IFSA 2005 , 438-444.

53. Liu, M. and Wang, Z., Classification using generalized Choquet integral projections, Proc. IFSA 2005 , 421-426.

52. Li, W., Wang, Z., Lee, K-H. and Leung, K-S., Units scaling for generalized Choquet integral, Proc. IFSA 2005, 121-125.

51. Yang, R., Wang, Z., Heng, P-A. and Leung, K-S., Fuzzy multiregression networks, accepted by FUZZ-IEEE 2004.

50. Wang, Z., Guo, H., Shi, Y. and Leung, K-S., A brief description of hybrid nonlinear classifiers based on generalized Choquet integrals, presented at the Chinese Academy of Sciences Symposium on Data Mining and Knowledge Management (presented at CASDMKM 2004 and published in Lecture Notes in Artificial Intelligence 3327, 34-40 ), 2004.

49. Wang, Z., Xu, K., Heng, P-A. and Leung K-S., Genetic algorithms with a bleeding algorithm for solving the inverse problem of indeterminate integrals Proc. IPMU2004, 1271-1278.

48. Yang, R., Wang, Z., Heng, P-A. and Leung, K-S., The calculation of Choquet integrals with fuzzy-valued integrand, Proc. IPMU2004, 1263-1270.

47. Wang, Z., Xu, K., Heng, P-A. and Leung, K-S., A genetic algorithm for solving the inverse problem of indeterminate integrals, IFSA 2003.

46. Wang, Z. and Guo, H., A new genetic algorithm for nonlinear multiregressions based on generalized Choquet integrals, Proc. FUZZ-IEEE 2003 , 819-821.

45. Wang, Z., A new model of nonlinear multiregressions by projection pursuit based on generalized Choquet integrals, Proc. FUZZ-IEEE 2002 , 1240-1244.

44. Xu, K., Wang, Z., Heng, P-A. and Leung, K-S., Using generalized Choquet integrals in projection pursuit based classification, Proc. IFSA/NAFIPS 2001 , Vancouver (2001), 506-511.

43. Wang, Z., Klir, G.J., Swan-Stone, J. and Xu, K., An algorithm for calculating natural extensions with respect to lower probabilities, in "Fuzzy Measures and Integrals—Theory and Applications" (M. Grabisch, T. Murofushi, and M. Sugeno Eds.), Springer Verlag, Heidelberg (2000), 467-476.

42. Wang, Z. and Xu, K., On the autocontinuity of set functions, in "Fuzzy Measures and Integrals—Theory and Applications" (M. Grabisch, T. Murofushi, and M. Sugeno Eds.), Springer Verlag, Heidelberg (2000), 161-170.

41. Wang, Z. and Nguyen, H.T., Some convergence theorems for the sequence of new-defined nonlinear integrals with respect to fuzzy measures, Proc. IFSA'99 , Taipei (1999), 925-928.

40. Wang, Z. and Xu, K., A brief discussion on a new type of nonlinear integrals with respect to nonadditive set functions, in "Fuzzy set Theory and Applications" (Yingming Liu, Congxin Wu, and Xizhao Wang eds., Proc. 1998 Conference of the Chinese Fuzzy Mathematics and Fuzzy Systems Association ), 95-103.

39. Leung, K-S., Wong, M-L., Lam, W. and Wang, Z., Discovering nonlinear-integral networks from databases using evolutionary computation and minimum description length principle, Proc. IEEE SMC'98 , San Diego (1998), 2354-2359.

38. Xu, K., Wang, Z. and Leung, K-S., Using a new type of nonlinear integral for multi-regression: an application of evolutionary algorithms in data mining, Proc. IEEE SMC'98 , San Diego (1998), 2326-2331.

37. Wang, Z., Leung, K-S. and Xu, K., A new nonlinear regression model used for multisource-multisensor data fusion: an application of nonlinear integrals and genetic algorithms, Proc. FUSION'98 , Las Vigas (1998), 299-306.

36. Leung, K-S. and Wang, Z., A new nonlinear integral used for information fusion, Proc. FUZZ-IEEE'98 , Anchorage (1998), 802-807.

35. Wang, Z., Leung, K-S. and Wang, J., Using genetic algorithms to determine importance measure based on Sugeno's integral, Proc. CCNS'97 , Nanjing (1997), 450-453.

34. Wang, Z., Leung, K-S. and Wang, J., Genetic algorithms used for determining belief measures and plausibility measures, Proc. NAFIPS'97 , Syracuse (1997), 195-198.

33. Wang, Z. and Klir, G.J., The calculation of natural extension with respect to lower probabilities, Proc. NAFIPS'97 , Syracuse (1997), 191-194.

32. Wang, Z., Leung, K-S. and Wang, J., Genetic algorithms used for determining nonadditive set functions in information fusion, Proc. IFSA'97 , Vol 1, Prague (1997), 518-521.

31. Klir, G.J. and Wang, Z., Convergence theorems for sequences of Choquet integrals and the stability of nonlinear integral systems, Proc. NAFIPS'96 , Berkeley, California (1996), 564-566.

30. Wang, J. and Wang, Z., Detecting constructions of nonlinear integral systems from input-output data: an application of neural networks, Proc. NAFIPS'96 , Berkeley, California (1996), 559-563.

29. Wang, Z. and Wang, J., Using genetic algorithm for extension and fitting of belief measures and plausibility measures (extended abstract), Proc. NAFIPS'96 , Berkeley, California (1996), 348-350.

28. Wang, Z. and Wang, J., Using genetic algorithms for l -fuzzy measure fitting and extension, Proc. FUZZ/IEEE'96, New Orleans (1996), 1871-1874.

27. Wang, Z. and Wang, J., Neural networks used for optimization on determining belief measures and plausibility measures from data, in "Methodologies for the Conception, Design, and Application of Intelligent Systems" ( Proc. of the 4th International Conference on Soft Computing ), Iizuka, Japan, (1996), 593-595.

26. Wang, Z., Klir, G.J. and Resconi, G., Expressing fuzzy measures by a model of modal logic: a discrete case, in "Fuzzy Logic and its Applications to Engineering, Information Sciences, and Intelligent Systems" (Z. Bien and K. C. Min eds.), Kluwer Academic Publishers (1995), 3-13.

25. Wang, Z. and Wang, W., Extension of lower probabilities and coherence of belief measures (revised version), in "Advances in Intelligent Computing" (B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh eds.), Springer Verlag (1995), 62-69.

24. Wang, Z. and Wang, J., Determining fuzzy measures by Choquet integral, Proc. ISUMA-NAFIPS'95 , IEEE Computer Society Press (1995), 274-277.

23. Wang, Z., Klir, G.J. and Harmanec, D., On structural characteristics of monotone set functions defined by fuzzy integral, Proc. IFSA'95 , São Paulo (1995), 421-422.

22. Wang, Z., Absolute continuity of fuzzy measures, Proc. FUZZ-IEEE/IFES'95 , Yokohama (1995), 131-136.

21. Wang, Z., Wang, W. and Klir, G.J., Extension of lower probabilities and coherence of belief measures, Proc. IPMU'94 , Paris (1994), 59-64.

20. Wang, Z., Pan integral and Choquet integral, Proc. IFSA'93 , Soeul (1993), 316-317.

19. Wang, Z., Klir, G.J. and Resconi, G., Fuzzy measure and modal logic, Proc. IFSA'93 , Soeul (1993), 89-91.

18. Wang, Z., On the null-additivity and the autocontinuity of fuzzy measures, Proc. IFSA'89 , Seattle (1989), 184-185.

17. Wang, Z., Fuzzy linear regression analysis of fuzzy valued variables, Proc. IFSA'89 , Seattle (1989).

16. Wang, Z., On the autocontinuity of fuzzy measures, in "Cybernetics and Systems'88" (R. Trappl ed.), Kluwer Academic Publishers (1988).

15. Wang, Z., Fuzzy integral on fuzzy set, BUSEFAL 36 (1988).

14. Wang, Z., Covex fuzzy sets and their shadows, in "Cybernetics and Systems'88" (R. Trappl ed.), Kluwer Academic Publishers (1988).

13. Wang, Z., Absolute continuity and extension of fuzzy measures, BUSEFAL 30 (1987).

12. Wang, Z., Fuzzy convolution of fuzzy distributions on group, in "Analysis of Fuzzy Information" (J. C. Bezdek ed.), CRC Press (1987), 97-103.

11. Wang, Z., Fuzzy linear regression of fuzzy valued variables, Proc. NAFIPS'87 , New Orleans (1987), 76-80.

10. Wang, Z., Some recent advances on the possibility measure theory, in "Uncertainty in Knowledge-Based Systems" (B. Bouchon and R. R. Yager eds.) Springer-Verlag (1987), 173-175.

9. Wang, Z., Semi-lattice isomorphism of the extension of possibility measure and the solution of fuzzy relation equation, in "Cybernetics and Systems'86" (R. Trappl ed.), D. Reidel Publishing Company (1986), 581-583.

8. Wang, Z., Some results on the extension of possibility measure and consonant belief function, in "Recent Developments in the Theory and Applications of Fuzzy Sets" (W. Bandler and A. Kandel eds.), New Orleans (1986).

7. Wang, Z., Semi-lattice structure of all extensions of possibility measure and consonant belief function, in "Fuzzy Mathematics in Earthquake Research" (Deyi Feng and Xihui Liu eds.), Seismological Press, Beijing (1985), 332-336,

6. Wang, Z., Extension of consonant belief functions defined on an arbitrary nonempty class of sets, in "Publication 54 de la Group de Researche Claude Francois Picard", C. N. R. S. France (1985), 61-65.

5. Wang, Z., Extension of possibility measures defined on an arbitrary nonempty class of sets, Proc. IFSA'85 , Palma de Mallorca (1985).

4. Wang, Z., On the extension of possibility measures, BUSEFAL 18 (1984), 26-32.

3. Wang, Z., M-fuzzy numbers and random variables, in "Cybernetics and Systems Research 2" (R. Trappl ed.), North-Holland (1984), 535-538.

2. Wang, Z., On the convergence of sequence of measurable functions on the fuzzy measure space, BUSEFAL 9 (1982), 27-30.

1. Wang, Z., Une classe de measures floues—les quasi-mesures, BUSEFAL 6 (1981), 28-37.