SKIP navigation
Department of Mathematics
Site Name Here

Jack Heidel

Selected Publications

23. Zhang, Fu and Heidel, J., Chaotic and nonchaotic behavior in three-dimensional quadratic systems: 5-1 dissipative cases, International Journal of Bifurcations and Chaos, to appear. (.pdf)

22. Heidel, J., Ali, H., Corbett, B.,Liu, J., Morrison, B., O’Connor, M., Richter-Egger, D., Ryan, C., Increasing the number of homegrown STEM majors: what works and what doesn’t, Science Educator 20 (2011), 49-54. (.pdf)

21. From, S., Heidel, J. and Maloney, J., On the location and nature of derivative blowups of solutions to certain nonlinear differential equations, Far East Journal of Mathematical Sciences 50 (2011), 1-22. (.pdf)

20. Heidel, J. and Zhang, Fu, Some open problems in the dynamics of quadratic and higher degree polynomial ode systems, in Elhadj Z. and Sprott, J., Frontiers in the study of chaotic dynamical systems with open problems, World Scientific, (2011). (.pdf)

19. Heidel, J., The sky is not falling, it’s just shifting, Notices of the American Mathematical Society (2010), 943 (.pdf)

18. Zhang, Fu, Heidel, J., Le Borne, R., Determining nonchaotic parameter regions in some simple chaotic jerk functions, Chaos, Solitons and Fractals, 36 (2008), 862-873. (.pdf)

17. Helicar, T., Konvalina J., Heidel, J. and Rogers, J., Emergent decision-making in biological signal transduction networks, Proc. Nat. Acad. Sci., 105 (2008), 1913-1918. (.pdf)

16. Heidel, J. and Zhang, Fu, Nonchaotic and chaotic behavior in three dimensional quadratic systems: five-one conservative cases, Int. J. Bifur, Chaos, 17(2007), 2049-2072. (.pdf)

15. Konvalina, J., Konfisakhar, I., Heidel, J. and Rogers, J., Combinatorial Fractal Geometry with a biological application, Fractals, 14 (2006), 133-142. (.pdf)

14. Konvalina, J., Heidel, J. and Rogers, J., A Mean Paradox, Amer. Math Monthly, 113 (2005), 166-169. (.pdf)

13. Dora Matache, Jack Heidel, Asynchronous random Boolean network model based on elementary cellular automata, rule126, Physical Review E, 71, 026232 (2005). (.pdf)

12. Max Kurz, Nicholas Stergiou, Jack Heidel, Terry Foster, A template for the exploration of chaotic locomotive patterns, Chaos, Solitons and Fractals 23, 485-493, 2005.

11. Dora Matache, Jack Heidel, A Random Boolean Network Model and Deterministic Chaos, Physical Review E, 69, 056214, 2004. (.pdf)

10. Christopher Farrow, Jack Heidel, John Maloney, and Jim Rogers, Scalar equations for synchronous Boolean networks with biological applications, IEEE Transactions on Neural Networks, 15, 348-354, 2004. (.pdf)

9. Jack Heidel, John Maloney, Christopher Farrow and Jim Rogers,Finding cycles in synchronous Boolean networks with applications to biochemical systems, Int. J. Bifur. Chaos 13(3): 535-552, 2003. (.pdf)

8. Ugo Buzzi, Nicholas Stergiou, Patricia Hageman, Max Kurz and Jack Heidel,Nonlinear dynamics indicates aging affects variability during gait, Clinical Biomechanics 18: 435-443, 2003.

7. John Maloney and Jack Heidel, An analysis of a fractal kinetics curve of Savageau, J. Austral. Math. Soc. Ser. B, 45, 261-269, 2003. (.pdf)

6. Jack Heidel and John Maloney, An analysis of a fractal Michaelis-Menten Curve, J Austral. Math. Soc. Ser. B 41:410-422, 2000. (.pdf)

5. John Maloney, Jack Heidel and Josip Pecaric, A reverse Holder-type inequality for the logarithmic mean and generalizations, J. Austral. Math Soc. Ser B 41:401-409, 2000. (.pdf)

4. Jack Heidel and Zhang Fu, Non-chaotic behavior in three-dimensional quadratic systems II. The conservative case, Nonlinearity 12:617-633, 1999. (.pdf)

3. Jack Heidel and John Maloney, When can sigmoidal data be fit to a Hill curve?, J. Austral. Math Soc. Ser B, 40:1-10, 1998. (.pdf)

2. Zhang Fu and Jack Heidel, Nonchaotic behavior in three-dimensional quadratic systems, Nonlinearity 10:1289-1303, 1997. (.pdf)

1. Jack Heidel, The existence of periodic orbit of the tent map, Phys. Lett A 143:195-201, 1990.