

Kathryn Dempsey, Ph.D. Research Associate School of Interdisciplinary Informatics University of Nebraska at Omaha Email: <u>kdempsey@unomaha.edu</u> Phone: 402-554-2562

OVERVIEW

Introductions

- Part I: What is bioinformatics?
 Activity 1: Extraction of DNA
- Part II: How is bioinformatics useful?
 Activity 2: Finding Disease Genes
- Conclusions

OVERVIEW

Introductions

- Part I: What is bioinformatics?
 Activity 1: Extraction of DNA
- Part II: How is bioinformatics useful?
 Activity 2: Finding Disease Genes
- Conclusions

WHAT IS BIOINFORMATICS?

- The term was originally coined in the mid-1980s to refer to analysis of biological sequences*
- Later, used to describe all computer applications in biological sciences.
 - Definition varies
 - Bioinformatics is a new scientific discipline with foundations in computer science and molecular biology (and chemistry and mathematics and statistics and...)
 - Very few formally trained bioinformaticians—most have migrated from other fields (myself included)

 (\square)

Brief History of Bioinformatics

WHY DO WE NEED BIOINFORMATICS?

- Genomes, personalized sequencing •
- Complexity of disease •

•

- Health records, public health •
- **Disaster preparedness** •

Twitter: Tweets Per Day

Image Source: http://api.ning.com/files/O6-JQcfS6sxRuZ8l2i5nJVa59xL-krT-a6UgeoLNaHwL2w-JSR-Cy56PmikOywRQgy2gDfYxLAb0Hs*VFr8lePv5QFBJdhDH/BigData.001.jpg

TYPICAL PROJECTS

Nervous system

medicine

THE CENTRAL DOGMA OF BIOINFORMATICS

[[]]]

DNA (Deoxyribose Nucleic Acid)

- Genetic material
- <u>Polymer</u> of nitrogenous bases (A, **T**, G & C)
- Contains hereditary information (<u>Genes</u>) in the chromosome
- <u>Chromosome</u> is a thread like linear strand of DNA and associated proteins (histones)
- Chromosomes constitute the <u>genome</u> of an organism

Rosalind Franklin!

()

THE CENTRAL DOGMA OF BIOINFORMATICS

[[]]]

RNA (RiboNucleic Acid)

- <u>Polymer</u> of nucleotides (A,
 U, G & C)
- The temporary copy of a gene
- Copied in the nucleus, transported to cytoplasm to become protein

THE CENTRAL DOGMA OF BIOINFORMATICS

[[]]]

Proteins

- Functional unit of life
- Polymer of 20 naturally occurring amino acids
- Made from RNA
 molecules during
 <u>translation</u> by ribosome

Onward to Activity 1

- Central Dogma
 - If you remember one thing, remember this!
- Bioinformatics has roots in biology
- To learn what the human genome is, we must first get the genome out of the cells!

ACTIVITY 1:

Extracting DNA from a Strawberry

http://www.youtube.com/watch?v=hOpu4iN5Bh4&noredirect=1

 (\square)

OVERVIEW

Introductions

- Part I: What is bioinformatics?
 Activity 1: Extraction of DNA
- Part II: How is bioinformatics useful?
 Activity 2: Finding Disease Genes
- Conclusions

OVERVIEW

Introductions

- Part I: What is bioinformatics?
 Activity 1: Extraction of DNA
- Part II: How is bioinformatics useful?
 Activity 2: Finding Disease Genes
- Conclusions

Why don't we have personalized medicine? Where is the cure for cancer? Why is AIDS still misunderstood?

Personalized Medicine Study

- 54yr old male volunteer
- Plasma and serum used for testing
- 14 month time course
- Complete medical exams and labs at each meeting (20 time points total)
- Extensive sampling at 2 periods of viral infection:
 - HRV (human rhinovirus) common cold
 - RSV (respirtatory synticial) bronchitis

Resource

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen,^{1,11} George I. Mias,^{1,11} Jennifer Li-Pook-Than,^{1,11} Lihua Jiang,^{1,11} Hugo Y.K. Lam,^{1,12} Rong Chen,^{2,12} Elana Miriami,¹ Konrad J. Karczewski,¹ Manoj Hariharan,¹ Frederick E. Dewey,³ Yong Cheng,¹ Michael J. Clark,¹ Hogune Im,¹ Lukas Habegger,^{6,7} Suganthi Balasubramanian,^{6,7} Maeve O'Huallachain,¹ Joel T. Dudley,² Sara Hillenmeyer,¹ Rajini Haraksingh,¹ Donald Sharon,¹ Ghia Euskirchen,¹ Phil Lacroute,¹ Keith Bettinger,¹ Alan P. Boyle,¹ Maya Kasowski,¹ Fabian Grubert,¹ Scott Seki,² Marco Garcia,² Michelle Whirl-Carrillo,¹ Mercedes Gallardo,^{9,10} Maria A. Blasco,⁹ Peter L. Greenberg,⁴ Phyllis Snyder,¹ Teri E. Klein,¹ Russ B. Altman,^{1,5} Atul J. Butte,² Euan A. Ashley,³ Mark Gerstein,^{6,7,8} Kari C. Nadeau,² Hua Tang,¹ and Michael Snyder^{1,*} ¹Department of Genetics, Stanford University School of Medicine ²Division of Systems Medicine and Division of Immunology and Allergy, Department of Pediatrics ³Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine ⁴Division of Hematology, Department of Medicine ⁵Department of Bioengineering Stanford University, Stanford, CA 94305, USA

UNIVERSITY OF NEBR

Techniqu

chniques used:

– HRV and RSV

12 1'''

9

18-12 11 11 11 11 11 11

0

- Whole-genom
- Whole-exome
- Sanger-DNA s
- Whole-transcr
- Small RNA se

Proteome Profiling Profiling bfiling rofiling say

S

hRNA-Seq

Why don't we have personalized medicine? Where is the cure for cancer? Why is AIDS still misunderstood?

> We don't know everything. There's lots and lots of data. Life is complex. Everyone is unique.

Databases

- Pubmed Journal articles on biomedical research
- OMIM Disease genes in humans
- Genbank All known data on genes and their proteins, and their DNA sequence
- PDB 3-D proteins structures
- MGD Organism specifc (mouse)

Phenotypic Alleles Query Results Summary					
Symbol Name ID MGI:1101771					
9 matching Alleles (1 Gene/Marker represented)					
Allele Symbol Gene; Allele Name	Chr	Synonyms	Category	Abnormal Phenotypes Reported in these Systems	Human Disease Models
<u>Kl^{kl}</u> klotho; klotho	5	alpha-kl-, kl, Kl-, klothohm	Transgenic (random, gene disruption)	adipose, behavior, cardiovascular, cellular, endocrine/exocrine, growth/size, hematopoietic, homeostasis, immune, integument, limbs/digits/tail, liver/biliary, mortality/aging, muscle, nervous system, other, reproductive, respiratory, skeleton	<u>Emphysema, Hereditary Pulmonary</u> 130700; <u>Klotho; KL</u> 604824
<u>Kl^{tm1.1Tel}</u> klotho; targeted mutation 1.1, Tobias E Larsson	5	Klotho ^{flox}	Targeted (Floxed/Frt)	homeostasis, renal/urinary	
<u>Kl^{tm1.2Tel}</u> klotho; targeted mutation 1.2, Tobias E Larsson	5	beta-KL-	Targeted (knock-out)	behavior, growth/size, homeostasis, mortality/aging, renal/urinary, skeleton	
Kltm1Lex klotho; targeted mutation 1, Lexicon Genetics	5		Targeted (knock-out)	growth/size, homeostasis, limbs/digits/tail, mortality/aging, skeleton	
<u>Kl^{tm1Yin}</u> klotho; targeted mutation 1, Yo-ichi Nabeshima	5	kl-	Targeted (knock-out)	adipose, growth/size, homeostasis, mortality/aging, skeleton	
<u>Kl^{tm2Yin}</u> klotho; targeted mutation 2, Yo-ichi Nabeshima	5	kl-geo	Targeted (Reporter)	cardiovascular, mortality/aging	
<u>Kl^{Gt(522F6)}Cmhd</u> Klotho; gene trap 522F6, Centre for Modeling Human Disease	5		Gene trapped (Cell Line)		
<u>Kltm1a(EUCOMM)Hmeu</u> klotho; targeted mutation 1a, Helmholtz Zentrum Muenchen GmbH	5		Targeted (Floxed/Frt) (Cell Line)		
<u>Kltm1e(EUCOMM)Hmqu</u> klotho; targeted mutation 1e, Helmholtz Zentrum Muenchen GmbH	5		Targeted (Reporter) (Cell Line)		

Distribution of 491 Blast Hits on the Query Sequence

)MAHA

If I give you a gene sequence, tell me which of the billions of known sequences is most similar to it.

BLAST

Alignment (Clustal, MUSCLE, Tcoffee)

If I give you a bunch of sequences from different animals, tell me how they are related.

Ш

Laurasiatheria

TRENDS in Ecology & Evolution

Rodentia

Eulipotyphla

Carnivora

Pholidota

Chiroptera

Perissodactyla

Cetartiodactyla

Phylogenetics

ATTCAGATCA

80% Similar

([])

TTTCAGATCG

20% Similar

TACCAATCGC

We already have some databases and tools .

-but we need more to solve those questions.
- Example: A disease where only one set of 3 DNA bases is missing.

– Do you know what this disease is?

- Activity 2:
 - The knowledge in bioinformatics databases
 - How to use some tools: BLAST, Alignment, Translation!

OVERVIEW

Introductions

- Part I: What is bioinformatics?
 Activity 1: Extraction of DNA
- Part II: How is bioinformatics useful?
 Activity 2: Finding Disease Genes
- Conclusions

- Massive amounts of data
- Many generation methods
- FEW ANALYSIS methods
- o "Signal corruption"

• How to model data??

 How to extract knowledge?

- A network:
- Elements and their interactions.
- Nodes \rightarrow elements
- Edges \rightarrow interactions
- Any relationship can be modeled using the network model

EXAMPLE: SYNTHETIC LETHALITY NETWORKS

Activity 3: Networks

 \square

 (\bigcirc)

 \square

 (\bigcirc)

The nodes with the most interactions are almost always going to get the signal....

....whether it be the flu or the winning lotto numbers.

Networks!

- Human social networks work this way
- Cell networks work this way
- Many other networks act this way
- Flu pandemic planning
- Vaccination planning
- Drug targets for the cell
- National security planning

Conclusions

- DNA \rightarrow RNA \rightarrow Protein
- We need bioinformatics
 - Understanding cellular systems
 - Personalized medicine
 - Prevention vs. treatment
- Many skills gained
 - Biomedical research
 - Computer science
 - Mathematics
 - Team science
 - …. & many more!

A Career in Bioinformatics

Skills needed

- Programming (e.g., Perl, Python, Java, C++, PHP)
- Database administration (e.g. MySQL, Oracle)
- UNIX/Linux Operating System
- Information Management

Types of Jobs

 Scientific curators, Software Developer, Network Engineering, Administrator/analyst, Bio-Statistics or any jobs where biologists are currently hired.

Types of Employers

- Pharmaceutical, Biotech and Software development companies
- Academic Institutes and Hospitals
- Research Institutes (JGML Broad Institute, JGI, Tgen,)

Contact us! Kdempsey@unomaha.edu @Science_Kate

Dkbastola@unomaha.edu