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The Genetic Landscape of a Cell
Michael Costanzo,1,2* Anastasia Baryshnikova,1,2* Jeremy Bellay,3 Yungil Kim,3 Eric D. Spear,4
Carolyn S. Sevier,4 Huiming Ding,1,2 Judice L.Y. Koh,1,2 Kiana Toufighi,1,2 Sara Mostafavi,1,5
Jeany Prinz,1,2 Robert P. St. Onge,6 Benjamin VanderSluis,3 Taras Makhnevych,7
Franco J. Vizeacoumar,1,2 Solmaz Alizadeh,1,2 Sondra Bahr,1,2 Renee L. Brost,1,2 Yiqun Chen,1,2
Murat Cokol,8 Raamesh Deshpande,3 Zhijian Li,1,2 Zhen-Yuan Lin,9 Wendy Liang,1,2
Michaela Marback,1,2 Jadine Paw,1,2 Bryan-Joseph San Luis,1,2 Ermira Shuteriqi,1,2
Amy Hin Yan Tong,1,2 Nydia van Dyk,1,2 Iain M. Wallace,1,2,10 Joseph A. Whitney,1,5
Matthew T. Weirauch,11 Guoqing Zhong,1,2 Hongwei Zhu,1,2 Walid A. Houry,7 Michael Brudno,1,5
Sasan Ragibizadeh,12 Balázs Papp,13 Csaba Pál,13 Frederick P. Roth,8 Guri Giaever,2,10
Corey Nislow,1,2 Olga G. Troyanskaya,14 Howard Bussey,15 Gary D. Bader,1,2
Anne-Claude Gingras,9 Quaid D. Morris,1,2,5 Philip M. Kim,1,2 Chris A. Kaiser,4 Chad L. Myers,3†
Brenda J. Andrews,1,2† Charles Boone1,2†

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs
for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of
all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction
profiles reveals a functional map of the cell in which genes of similar biological processes cluster
together in coherent subsets, and highly correlated profiles delineate specific pathways to define
gene function. The global network identifies functional cross-connections between all bioprocesses,
mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a
number of different gene attributes, which may be informative about genetic network hubs in other
organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape
provides a key for interpretation of chemical-genetic interactions and drug target identification.

The relation between an organism's geno-
type and its phenotype are governed by
myriad genetic interactions (1). Although

a complex genetic landscape has long been an-
ticipated (2), exploration of genetic interac-
tions on a genome-wide level has been limited.

Systematic deletion analysis in the budding
yeast, Saccharomyces cerevisiae, demonstrates
that the majority of its ~6000 genes are indi-
vidually dispensable, with only a relatively
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Fig. 1. A correlation-based network
connecting genes with similar genetic
interaction profiles. Genetic profile sim-
ilarities were measured for all gene pairs
by computing Pearson correlation co-
efficients (PCCs) from the complete ge-
netic interaction matrix. Gene pairs
whose profile similarity exceeded a
PCC > 0.2 threshold were connected
in the network and laid out using an
edge-weighted, spring-embedded, net-
work layout algorithm (7, 8). Genes
sharing similar patterns of genetic
interactions are proximal to each
other; less-similar genes are posi-
tioned farther apart. Colored regions
indicate sets of genes enriched for GO
biological processes summarized by the
indicated terms.
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small subset (~20%) required for viability (1),
which suggests the evolution of extensive buf-
fering against genetic perturbations (3). Genome-
scale screens for genetic interactions that affect
the fitness of a cell or organism can chart the
genetic network underlying functional redun-
dancy (1). In particular, synthetic genetic array
(SGA) methodology (4) enables the systemat-
ic mapping of synthetic lethal genetic interac-
tions through an automated form of genetic
analysis that produces high-density arrays of
double mutants (5). Here, we report construc-
tion of a functionally unbiased genetic interac-
tion map for a eukaryotic cell.

Genome-scale, quantitative analysis of ge-
netic interactions. We consider a digenic in-
teraction as a double mutant that shows a
significant deviation in fitness compared with
the expected multiplicative effect of combin-
ing two single mutants (6). Negative interactions
refer to a more severe fitness defect than ex-
pected, with the extreme case being synthetic
lethality; positive interactions refer to double mu-
tants with a less severe fitness defect than ex-
pected. To quantitatively score genetic interactions
in large-scale SGA screens, we developed a mod-
el to estimate fitness defects directly from double-
mutant colony sizes (7, 8) (fig. S1A). We screened
1712 S. cerevisiae query genes, including 334
conditional or hypomorphic alleles of essential
genes, for a total of ~5.4 million gene pairs
spanning all biological processes (fig. S1, B and
C) (7, 8). These queries were selected randomly
with respect to function; however, preference
was given to mutants exhibiting fitness defects
(7, 8). Comparing fitness estimates of single
mutants with their corresponding double-
mutant phenotypes identified ~170,000 interac-
tions, a threefold increase over all previously
reported genetic interaction data (fig. S1, D and
E). Our data captured ~35% of previously
reported negative genetic interactions (7, 8)
(fig. S1D) and exhibited significant correlation
(r = 0.89) (fig. S1F) with genetic interactions
identified by high-resolution liquid growth pro-
files (7–9), which confirmed the accuracy of our
measurements (fig. S1F). Thus, our approach
enabled assembly of a quantitative fitness-based
profile of genetic interactions on a genome-wide
scale.

We determined false-negative and false-
positive rates at a defined confidence thresh-
old (|e| > 0.08, P < 0.05) (fig. S2A) (7, 8) and
used this filtered data set for all analyses. Data
evaluation, by several different measures (7, 8),
indicated that interactions that corresponded
to specific confidence levels were functionally
informative (fig. S2, B and C). In particular,
enrichment for Gene Ontology (GO) coanno-
tated gene pairs was correlated with the sig-
nificance and magnitude of genetic interaction
(fig. S2B), as well as with genetic profile sim-
ilarity (fig. S2C) (7, 8). Notably, we found about
twice as many negative interactions as positive
genetic interactions (fig. S1B). Moreover, neg-
ative genetic interactions tended to be more in-
formative for identifying physical interactions
and GO coannotated gene pairs than positive in-
teractions (fig. S2C).

A functional map of the cell. Genes be-
longing to the same pathway or biological
process tend to share similar profiles of genetic
interactions (5). We exploited this property to
construct a global network, grouping genes with
similar interaction patterns together: Nodes in
this network represent genes, and edges connect
gene pairs that share common sets of genetic
interactions or similar interaction profiles (Fig. 1).
This network highlights genetic relations between
diverse biological processes and the inherent
functional organization of the cell. Genes dis-
playing tightly correlated profiles form discern-
ible clusters corresponding to distinct bioprocesses,
and the relative distance between distinct clusters
appears to reflect shared functionality (Fig. 1). For
example, the role of the microtubule cytoskeleton
in bridging nuclear chromosomal- and actin
cytoskeleton–based functions is illustrated by
the close proximity and relative positioning of
clusters corresponding to genes annotated with
roles in cell polarity and morphogenesis, mitosis
and chromosome segregation, and DNA repli-
cation and repair (Fig. 1). Despite screening only
~30% of the genome as query genes, we re-
covered genetic interactions for ~75% of the
genome because partial genetic interaction pro-
files were generated for nearly all nonessential
genes in the genome. Our data were able to
precisely predict known gene functions (GO
biological process annotations), as well as or

better than all other genome-scale data sets (fig.
S2D), and assigned a substantial amount of
unique functional information for the genes not
captured by previous genetic interaction studies
(fig. S2D).

Predicting function and relations. Although
complex, the genetic interaction network con-
tains functional information at multiple levels of
resolution. The interrogation of the genetic map
at higher resolution enabled the dissection of
broad biological processes into distinct, yet inter-
dependent, gene cohorts (Fig. 2) [supporting
data file S8 (8)]. In evenmore detail, we can also
visualize networks in which genes are connected
by edges that correspond to genetic interactions
directly. Indeed, gene clusters that are correlated
by negative (red) and positive (green) genetic
interactions reveal network organization reflect-
ing biological pathways and/or protein com-
plexes and their functional integration with one
another (Fig. 2, B to D). The genetic interactions
occurring between different pathways and com-
plexes were often monochromatic, as predicted
previously (10), such that they were composed
almost exclusively of a single type of genetic
interaction, either all negative or all positive.

Genetic clusters were used to predict function
for uncharacterized genes on the basis of network
connectivity (Fig. 2, A to D). Three genes,
PAR32, ECM30, and UBP15, had interaction
profiles similar to those of members of the Gap1-
sorting module (Fig. 2B), and consistent with a
role in this process, all three genes led to Gap1
sorting and transport defects when deleted (Fig.
2E). Additional experimental results (fig. S3)
(11) suggest that Par32 may function in target
of rapamycin (TOR)–dependent regulation of
the Gln3, Gat1, Rtg1, and Rtg3 transcription
factors (12), whereas Ecm30 forms a stoichio-
metric complex with the Ubp15 ubiquitin protease
(7, 8) that may modulate Gap1 localization, per-
haps by controlling its ubiquitination state.

In another example, similar genetic interac-
tion profiles suggested a strong functional re-
lation between the GET pathway and the poorly
characterized gene, SGT2 (Fig. 2C). Consistent
with a role in endoplasmic reticulum (ER)–
dependent membrane targeting (13) or protein
folding (14), we found that Sgt2 physically
interacts with Get4, Get5, and heat shock 70

Fig. 2. Magnification of the functional map better resolves cellular processes.
(A) A subnetwork corresponding to a region of the global map described in
Fig. 1 is indicated in red (inset). Node color corresponds to a specific biological
process: dark green, amino acid biosynthesis and uptake; light green, signaling;
light purple, ER-Golgi; dark purple, endosome and vacuole sorting; yellow, ER-
dependent protein degradation; red, protein folding and glycosylation, cell wall
biosynthesis and integrity; fuchsia, tRNA modification; pink, cell polarity and
morphogenesis; orange, autophagy; and black, uncharacterized. Individual ge-
netic interactions contributing to genetic profiles revealed by (A) are illustrated
for three specific subnetworks in (B) to (D). (B toD) Subsets of genes belonging
to amino acid biosynthesis and uptake, ER-Golgi, and tRNAmodification regions
of the network were selected, and, in some cases, additional genes were included
from the complete network shown in Fig. 1. Nodes are grouped according to
profile similarity, and edges represent negative (red) and positive (green)

genetic interactions (|e| > 0.08, P < 0.05). Nonessential (circles) and essential
(diamonds) genes are colored according to the biological process indicated in
(A), and uncharacterized genes are depicted in yellow. (E) PAR32, ECM30, and
UBP15 are required for plasma membrane localization (micrographs) and
activity (histogram) of the Gap1 amino acid permease. DIC, differential inter-
ference contrast; GFP, green fluorescent protein. (F) Sgt2 physically interacts
with components of the GET pathway and members of the Hsp70 chaperone
family. Proteins identified with high confidence as specific interactors for tandem
affinity purification (TAP)–tagged Sgt2 (Sgt2-TAP) are shown in decreasing order
of spectral counts. (G) Distribution of the Elp and Urm modified codon usage
among synthetic sick or lethal interaction partners. The fraction of Elp and Urm
modified codons (lysine, glutamine, and glutamic acid) relative to all codons
was measured for all negative interactors with genes in the Elp or Urm
complex (red) relative to the background usage of all genes (blue).
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(Hsp70) protein family members (Fig. 2F), and,
similarly to GET pathway mutants (13), deletion
of SGT2 results in mislocalization of the tail-
anchored protein, Pex15 (fig. S4).

Deciphering complex regulatory relations
from the global genetic network. Because the
global genetic interaction map represents a broad
functional survey, it should provide insights into
the regulatory wiring diagram of the cell. For ex-
ample, synthetic lethal interactions between
genes encoding the elongator (Elp) complex and
those of the urmylation (Urm) pathway suggested
that the Urm pathway collaborates with the Elp
complex in the modification of specific transfer
RNAs (tRNAs) (15) (Fig. 2D). In addition to their
synthetic lethal relation, Elp and Urm pathway
genes shared highly similar genetic interaction
profiles; notably, these interactions were enriched
for cell polarity and secretion genes (P < 10−3)
(Fig. 2D), which reflects a specific cell polarity
defect associated with Elp pathway mutants (16).

The elongator tRNA modification machinery
has been postulated either to broadly affect the
translation of a suite of mRNAs whose genes
have cell polarity roles or to selectively influence
the activity of a key polarity regulatory gene (17).
We were intrigued by the finding that the subset
of Elp-Urm negative interactors, as well as cell
polarity and secretion genes, in general, encode
proteins that are significantly enriched for the
amino acids that charge Elp- and Urm-modified
tRNAs (Fig. 2G) (7, 8). These findings suggest

that Elp and Urm pathways may be biased
toward the regulation of a functionally specific
subset of cellular proteins. ELP1 is a highly
conserved gene whose human ortholog, inhib-
itor of kappa light polypeptide gene enhancer
in B cells, kinase complex–associated protein
(IKBKAP), is associated with a neurological
disorder, familial dysautonomia, which leads to
disruption of cytoskeletal organization when
mutated (18, 19). Thus, it is possible that disease
manifestation may involve impaired IKBKAP-
dependent translation of a set of human genes
belonging to a specific functional group.

Genetic network connectivity. Consistent
with the degree distribution of other biological
networks (1), the majority of genes have few inter-
actions, whereas a small number are highly con-
nected and serve as network hubs (Fig. 3A). We
found subsets of genes that showed a strong bias in
their interaction type. About 2% of array genes
exhibited more than eight times as many negative
interactions as positive ones, whereas a smaller set
containing ~1% of all array genes showed four
times as many positive as negative interactions
(Fig. 3B). Genes displaying this behavior were
functionally distinct. Specifically, a bias toward
negative interaction was observed for genes re-
quired for normal progression of the cell division
cycle (P < 10−8), which highlights the central role
of checkpoints in maintaining viability in dividing
cells. Predominantly positive interactions were in-
dicative of genes involved in translation, ribosomal

RNA processing, and mRNA decay (P < 10−5),
which may suggest that defects in the translation
machinery somehow mask phenotypes that would
otherwise be expressed in normal cells.

Genetic interaction degree, fitness, multi-
functionality, and pleiotropy. Genetic interac-
tion hubs show a clear association with several
fundamental physiological and evolutionary prop-
erties (Fig. 3C), which may be predictive of ge-
netic interactions in other organisms. In particular,
we uncovered a strong correlation between genetic
interaction degree and single-mutant fitness (r =
0.73). Single mutants with increasingly severe fit-
ness defects tended to exhibit an increased number
of both negative and positive interactions (Fig. 3C
and fig. S5, A and B) (7, 8). This relation was also
observed for essential genes where the average
number of interactions involving a temperature-
sensitivemutant allelewas inversely proportional to
allele fitness at a given semipermissive temperature
(fig. S5B). The increased connectivity of genes
with fitness defects when singly mutated was not
due to nonspecific interactions derived from a
generally compromised cell or experimental
noise; interactions with these genes were found
to overlap with known functional relationships
just as frequently as other interactions (fig. S5C).

In addition to the correlation with single-
mutant fitness defects, genetic interaction hubs
showed a high degree of pleiotropy. Specifically,
the number of genetic interactions for a particular
hub was significantly correlated with the number

Fig. 3. Positive and nega-
tive genetic interactions on
the basis of a defined confi-
dence threshold (|e| > 0.08,
P < 0.05) (7, 8). (A) The dis-
tribution of genetic inter-
action network degree for
negative (red) and positive
(green) interactions involv-
ing query genes. (B) The
ratio of positive to negative
interactions for each gene
varies across the genome.
(C) Pearson correlation be-
tween genetic interaction de-
gree (derived from the array
mutant strains) and physio-
logical and evolutionary
properties was measured for
positive (green), negative (red)
and protein-protein (black)
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of distinct annotated functions (multifunctional-
ity) for that gene (Fig. 3C and inset). This
connection between network hubs and pleiotropy
was further reflected by the rich variation asso-
ciated with hub mutant phenotypes and increased
phenotypic capacitance, the number of different
morphological phenotypes linked to a specific
gene as defined quantitatively (Fig. 3C) (20).
This relation suggests that genetic network hubs
play key roles in the integration and execution of
morphogenetic programs.

It is noteworthy that these correlations
persisted after we controlled for fitness defects
of single mutants (fig. S5D). Furthermore, these

trends reveal characteristics that distinguish
genetic network hubs from hubs on the physical
interaction network (Fig. 3C). Notably, the cor-
relation to both fitness andmultifunctionality was
several fold stronger for genetic interaction
degree (Fig. 3C). This likely reflects the ability
of genetic perturbation analysis to identify broad
phenotypic connections that cannot be captured in
networks subject to physical constraints and sug-
gests that large-scale genetic interaction networks
will be ofwide utility for defining the functional
wiring diagrams of cells and organisms.

Although there are several distinguishing
characteristics of genetic interaction hubs, we

measured a significant correlation (r ~ 0.2)
between the genetic and physical interaction de-
gree for any given gene (Fig. 3C). Similar to
protein-protein interaction hubs (21–23), we
found that genetic network hubs tend to be
expressed at higher mRNA levels. In compar-
ison with the whole-genome sequences of 23
different Ascomycota fungi species, we found
that genetic interaction degree correlated pos-
itively with gene conservation and negatively
with copy number volatility, which indicates
that they tend to be lost or duplicated less
frequently. Genes showing more genetic inter-
actions evolved (dN/dS) more slowly than genes

Fig. 4. (A) Frequency of synthetic
lethal/sick (negative) genetic inter-
actions within and across biological
processes. The fraction of screened
gene pairs exhibiting negative inter-
actions was measured for 17
broadly defined functional gene
sets (7, 8). A color was assigned to
each process-process element
reflecting the fraction of interaction
(blue, below the frequency of
random pairs; black, statistically
indistinguishable from the random
background of interactions; and
yellow, above the frequency of
random pairs), with the diagonal
representing within-process interac-
tions. The red line in the color scale
bar indicates random background.
(B) Genetic interaction frequency of
duplicate genes. T bars, SEM. (C)
Gene-specific factors explaining
the variation in number of nega-
tive interactions across biological
processes. (Top) The average num-
ber of interactions across each
process with the color indicating
processes that have more interac-
tions than expected (yellow, P <
0.05); processes whose interaction
degree is explained by the factors
indicated on the y axis; and those
with fewer interactions than ex-
pected (blue, P < 0.05). The in-
fluence of each gene-specific factor
in explaining the number of inter-
actions observed was measured by
plotting the ratio of F statistics of
the bioprocess factor before and
after incorporating the additional
gene-specific factor. This ratio is in-
dicated by the corresponding col-
umn in the heat map (7, 8). (AA,
amino acids; chrom. seg., chromo-
some segregation; HR, homolo-
gous recombination; kinetoch.,
kinetochore)
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with few interactions (Fig. 3C), which suggests
that genetic hubs generally tend to be evolution-
arily constrained. However, a subset of genetic
interaction hubs appears to behave differently.
Despite their tendency to evolve faster (fig. S5F)
(24), proteins with higher levels of native dis-
order tend to exhibit a large number of genetic
interactions, which suggests that genes encoding
disordered proteins may represent a distinct class
of genetic interaction hub.

Distribution of genetic interactions by
bioprocess. We assessed the distribution of
genetic interactions across different cellular pro-
cesses for both negative (Fig. 4A) and positive
(fig. S6A) (7, 8) interactions. The heat map iden-
tified functions enriched (yellow) or depleted
(blue) for genetic interactions relative to the ex-
pected frequency of a random gene set. As ex-
pected, genes involved in similar biological
processes were enriched for negative interac-
tions; however, we also observed genetic in-
teractions bridging bioprocesses (Fig. 4A).
Specifically, genes involved in chromatin,
transcription, ER-Golgi transport, and Golgi-
endosome transport showed a significant number
of interactions that bridge diverse functions, which
suggests that many of these genes are intercon-
nected or pleiotropic. These bioprocess-level

findings concur with individual gene analyses,
which indicated that genes involved in processes
related to chromatin structure and transcription
(P < 10−14), as well as secretion and vesicle trans-
port (P < 10−9), were among the most highly con-
nected genes in our network. The central role for
chromatin- and transcription-related processes
identified in the yeast genetic network is consist-
ent with large-scale genetic network mapping in
Caenorhabditis elegans (25), and the bridging
function for secretory pathway genes emphasizes
their role as communication conduits for the cell.
In contrast to genetic interactions, protein-protein
interactions connect relatively fewer bioprocesses,
and thus, although highly informative of local
pathway architecture, physical interactions fail to
provide a complete picture of multifunctionality
or interconnections between cellular processes
(fig. S6A). Reduced interactions in particular gene
sets, such as meiosis, drug or ion transport, and
metabolism or mitochondrial genes (blue in Fig.
4A), may arise because some processes are more
buffered than others and require more complex
genetic analysis to uncover their interactions (5),
whereas others may function only under certain
environmental conditions (26).

Because variation was observed in the average
number of genetic interactions for genes across

different bioprocesses, we tested whether gene-
specific properties (Fig. 3C) were predictive of
this variation. For example, we found that gene
duplicates exhibited fewer interactions when sur-
veyed across the entire genome (Fig. 4B) (7, 8),
and therefore, we asked if bioprocesses with rela-
tively few genetic interactions could be explained
by specific factors, such as a high percentage
of duplicated genes. An analysis of covariance
(ANCOVA) (Fig. 4C) (7, 8) showed that a linear
model including the gene-specific properties pre-
dictive of genetic interaction hubs (Fig. 3C) was
sufficient to explain the number of negative (12
out of 17) (Fig. 4C) and positive (13 out of 17)
(fig. S6B) genetic interactions for the majority
of bioprocesses. For example, the relatively few
genetic interactions seen for genes with roles in
drug and ion transport are explained by a com-
bination of a high rate of gene duplication (~50
to 60%) and copy number volatility among
genes annotated to this process. This is consist-
ent with the tendency of genes encoding protein
pumps to undergo numerous duplication events
(27), which confirms that extensive redundancy
associated with large gene families complicates
the identification of digenic interactions. Three
bioprocesses had significantly more negative in-
teractions than predicted (Fig. 4C) (P < 0.05),
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including those that show functional enrichment
for genetic interaction hubs (Fig. 4A). Converse-
ly, DNA replication and repair and amino acid
biosynthesis showed significantly fewer nega-
tive interactions than predicted (P < 0.05), which
suggested that either more genetic interactions
remain to be found for these genes under differ-
ent environmental conditions or that these genes
are more buffered and thus are inherently less
connected on the digenic network.

Overlap between the genetic and the protein-
protein interaction networks. We observed ge-
netic interactions overlapping with 10 to 20%
of protein-protein interaction pairs, depending
on the physical interaction mapping method-
ology (fig. S7), which is significantly higher
than expected randomly (~3%). Considering
the global yeast physical interaction network
as defined by affinity purification–mass spec-
trometry (28, 29), yeast two-hybrid protocol
(30), or protein-fragment complementation
assay (PCA) (31), roughly an equivalent num-
ber of physical interactions overlapped with
negative and positive genetic interaction pairs:
~7% of protein-protein interacting pairs shared
a negative genetic interaction, whereas ~5%
shared a positive interaction. Conversely, con-
sidering our genetic interaction network, only
a small fraction of gene pairs that show a
genetic interaction (0.4% negative and 0.5%
positive) are also physically linked. These find-
ings suggest that the vast majority of both pos-
itive and negative interactions occurs between,
rather than within, complexes and pathways,
connecting those that presumably work together
or buffer one another, respectively.

Navigating from genetic to chemical-
genetic interaction networks. The set of ~4700
viable yeast deletion mutants has been exposed
to hundreds of different chemical compounds
(26). We quantified the chemical-genetic degree
for each gene by counting the number of chem-
ical (environmental) perturbations for which the
corresponding gene deletion mutant showed
hypersensitivity. We found a significant correla-
tion (r = 0.4, P < 10−5) between genetic inter-
action and chemical-genetic degree (Fig. 3C).
These observations suggest that hubs on a
chemical-genetic network are predictive of hubs
on the genetic interaction network and can be
used to link environmental capacitance and
genetic robustness. Furthermore, our data sug-
gest that the same genes buffer the cell against
both environmental and genetic insults. It is not
known whether natural selection favors genetic
robustness (32), but the positive correlation be-
tween genetic interaction degree and envi-
ronmental capacitance suggests that genetic and
environmental robustness may coevolve (33).

Because chemical perturbations mimic genet-
ic perturbations, the genetic network should be
useful for predicting the cellular targets of bio-
active molecules (34). We identified genetic in-
teraction profiles that are significantly correlated
to a chemical-genetic profile of a particular com-

pound (7, 8, 26, 34) and showed that compounds
often clustered to dense regions of the genetic
network indicative of specific bioprocesses (Fig.
5A). For example, hydroxyurea, a compound
that inhibits ribonucleotide reductase and blocks
DNA synthesis, clusters with the gene cohort an-
notated with roles in DNA replication and repair
(Fig. 5A). These results demonstrate that cluster-
ing of chemical-genetic and genetic interaction
profiles complements haploinsufficiency profil-
ing, which has the potential to identify drug tar-
gets directly (26).We used this network approach
to examine the previously uncharacterized com-
pound, 0428-0027, which we have subsequent-
ly named erodoxin (Fig. 5A). Erodoxin clustered
with genes associated with protein folding, gly-
cosylation, and cell wall biosynthesis functions
(Fig. 5A) because the erodoxin chemical-genetic
profile most closely resembled the genetic in-
teraction profile of ERO1 (Fig. 5B and fig. S8A),
an essential gene involved in oxidative protein
folding (Fig. 5C) (35). Two additional lines of
evidence suggested that Ero1 is the target of
erodoxin. First, ero1D/+ and fad1D/+ hetero-
zygotes were the most hypersensitive mutants
identified from haploinsufficency profiling (fig.
S8B) (7, 8). Second, we found that erodoxin
leads to inhibition of Trx1 oxidation (Fig. 5D)
and delayed carboxy peptidase Y (CPY) pro-
cessing (Fig. 5E), which suggests that it inhibits
Ero1 activity both in vitro and in vivo.

Exploring the universe of genetic inter-
actions. Unbiased, systematic, and quantitative
analysis of digenic loss-of-function perturbations
assigns a rich phenotypic profile to each gene and
enables construction of a functional map of the
cell, organizing genes and higher-order biopro-
cesses according to their related roles (Fig. 1).
The functional connections defined by genetic
interactions complement the information derived
from networks based upon physical interactions,
which links previously uncharacterized genes to
specific pathways and complexes and reveals
connections between pathways and complexes.
The global mapping of genetic networks is be-
coming feasible in more complex cells and
metazoans because of the growing availability
of whole-genome sequences and large-scale
sets of gene-knockdown reagents (1). Although
negative genetic interactions can be conserved
from yeast to worms and from yeast to human
cells, the extent to which individual genetic
interactions are conserved over large evolution-
ary distances remains unclear (1). The conserva-
tion of the genetic map may also occur at various
levels of resolution. For example, overall net-
work topology (Fig. 1) and properties (Fig. 3C)
may be more highly conserved than particular
genetic interactions because they reflect the
fundamental architecture of the cell. The ability
to integrate genetic and chemical-genetic pertur-
bation data offers the potential to link bioactive
compounds to their targets (Fig. 5), to identify
genetic interaction hubs through chemical per-
turbations (Fig. 3C), to design synthetic lethal

therapies for targeting genetically defined tumors
(36), and to understand the mechanistic basis of
drug synergy (37). Finally, genetic interaction
maps provide a model for understanding the link
between genotype and phenotype and for out-
lining the general principles of complex genetic
interaction networks, which play a key role in
governing inherited phenotypes, including hu-
man disease (3).
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