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Abstrcict. The Ecological Society of America has evaluated the ecological effects of 
current and potential uses of field-released genetically engineered organisms (GEOs), as 
described in this Position Paper. Some GEOs could play a positive role in sustailaable 
agriculture, forestry, aquaculture, bioremediation, and environmental management, both in 
developed and developing countries. However, deliberate or inadvertent releases of GEOs 
into the environment could have negative ecological effects under certain circumstances. 

Possible risks of GEOs could include: (1) creating new or more vigorous pests and 
pathogens; (2) exacerbating the effects of existing pests through hybridization with related 
transgenic organisms; (3) harm to nontarget species, such as soil organisms, non-pest 
insects, birds, and other animals; (4) disruption of biotic communities, including agro- 
ecosystems; and (5) irreparable loss or changes in species diversity or genetic diversity 
within species. Many potential applications of genetic engineering extend beyond traditional 
breeding, encompassing viruses, bacteria, algae, fungi, grasses, trees, insects, fish, and 
shellfish. GEOs that present novel traits will need special scrutiny with regard to their 
environmental effects. 

The Ecological Society of America supports the following recommendations. (1) GEOs 
should be designed to reduce environmental risks. (2) More extensive studies of the en- 
vironmental benefits and risks associated with GEOs are needed. (3) These effects should 
be evaluated relative to appropriate baseline scenarios. (4) Environmental release of GEOs 
should be prevented if scientific knowledge about possible risks is clearly inadequate. (5) 
In some cases, post-release monitoring will be needed to identify, manage, and mitigate 
environmental risks. (6) Science-based regulation should subject all transgenic organisms 
to a similar risk assessment framework and should incorporate a cautious approach, rec- 
ognizing that many environmental effects are GEO- and site-specific. (7) Ecologists, ag- 
ricultural scientists, molecular biologists, and others need broader training and wider col- 
laboration to address these recommendations. 

In summary, GEOs should be evaluated and used within the context of a scientifically 
based regulatory policy that encourages innovation without compromising sound environ- 
mental management. The Ecological Society of America is committed to providing scientific 
expertise for evaluating and predicting the ecological effects of field-released transgenic 
organisms. 
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mental risks/benefits of genetic engineering; genetically modified organisms (GMO); monitoring; risk 
management; transgenic organisms. 
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EXECUTIVE SUMMARY 

The Ecological Society of America has evaluated the 
ecological effects of current and future uses of field- 
released genetically engineered organisms (GEOs), as 
described in this position paper. GEOs have the poten- 
tial to play a positive role in sustainable agriculture, 
forestry, aquaculture, bioremediation, and environ- 
mental management, both in developed and developing 
countries. However, deliberate or inadvertent releases 
of GEOs into the environment could have negative eco- 
logical impacts under some circumstances. For ex- 

ample, fast-growing transgenic salmon that escape 
from aquaculture net pens might jeopardize native fish 
populations. Ecological knowledge about potential en- 
vironmental effects of transgenic organisms is crucial 
for understanding and avoiding these types of risks. 

We reaffirm that risk evaluations of GEOs should 
focus on the phenotype or product rather the process 
of genetic engineering (e.g., NRC 1987, 2000, 2002a, 
Tiedje et al. 1989), but we also recognize that some 
GEOs possess novel characteristics that require greater 
scrutiny than organisms produced by traditional tech- 
niques of plant and animal breeding. Also, unlike com- 
mercialized crops or farm-raised fish, some GEOs are 
organisms for which there is little previous experience 
with breeding, release, and monitoring. Future appli- 
cations of genetic engineering extend far beyond tra- 
ditional breeding, encompassing transgenic viruses, 
bacteria, algae, fungi, grasses, trees, insects, fish, shell- 
fish, and many other nondomesticated species that oc- 
cur in both managed and unmanaged habitats. 

The environmental benefits and risks associated with 
GEOs should be evaluated relative to appropriate base- 
line scenarios (e.g., transgenic vs. conventional crops), 
with due consideration of the ecology of the organism 
receiving the trait, the trait itself, and the environ- 
ment(s) into which the organism will be introduced. 
Long-term ecological impacts of new types of GEOs 
may be difficult to predict or study prior to commer- 
cialization, and we strongly recommend a cautious ap- 
proach to releasing such GEOs into the environment. 
Engineered organisms that may pose some risk to the 
environment include cases where: 

* there is little prior experience with the trait and 
host combination; 

* the GEO may proliferate and persist without hu- 
man intervention; 

* genetic exchange is possible between a trans- 
formed organism and nondomesticated organisms; 
or 

* the trait confers an advantage to the GEO over 
native species in a given environment. 

An assessment of environmental risk is needed to min- 
imize the likelihood of negative ecological effects such 
as: 

* creating new or more vigorous pests and patho- 
gens; 

* exacerbating the effects of existing pests through 
hybridization with related transgenic organisms; 

* harm to nontarget species, such as soil organisms, 
nonpest insects, birds, and other animals; 

* disruptive effects on biotic communities; and 
* irreparable loss or changes in species diversity or 

genetic diversity within species. 
GEOs should be evaluated and used within the con- 

text of a scientifically based regulatory policy that en- 
courages innovation without compromising sound en- 
vironmental management. The process by which this 
occurs should be open to public scrutiny and broad- 
based scientific debate. In addition, current regulatory 
policies should be evaluated and modified over time to 
accommodate new applications of genetic engineering 
and improved ecological science. 

In light of these points, we offer the following rec- 
ommendations regarding the development, evaluation, 
and use of GEOs in the environment. 

1) Early planning in GEO development.-GEOs 
should be designed to reduce unwanted environmental 
risks by incorporating specific genetic features, which 
might include sterility, reduced fitness, inducible rather 
than constitutive gene expression, and the absence of 
undesirable selectable markers. 

2) Analyses of environmental benefits and risks.- 
Rigorous, well-designed studies of the benefits and 
risks associated with GEOs are needed. 

a) Ecologists, evolutionary biologists, and a wide 
range of other disciplinary specialists should become 
more actively involved in research aimed at quantifying 
benefits and risks posed by GEOs in the environment. 

b) Because of the inherent complexity of ecological 
systems, this research should be carried out over a 
range of spatial and temporal scales. 

c) We further recommend that the government and 
commercial sectors expand their support for environ- 
mental risk assessment (including environmental ben- 
efits) and risk management research. 

3) Preventing the release of unwanted GEOs.-Strict 
confinement of GEOs is often impossible after large- 
scale field releases have occurred. Therefore, we rec- 
ommend that large-scale or commercial release of 
GEOs be prevented if scientific knowledge about pos- 
sible risks is inadequate or if existing knowledge sug- 
gests the potential for serious unwanted environmental 
(or human health) effects. 

4) Monitoring of commercial GEOs.-Well-de- 
signed monitoring will be crucial to identify, manage, 
and mitigate environmental risks when there are rea- 
sons to suspect possible problems. In some cases, post- 
release monitoring may detect environmental risks that 
were not evident in small-scale, pre-commercial risk 
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evaluations. Because environmental monitoring is ex- 

pensive, a clear system of adaptive management is 
needed so that monitoring data can be used effectively 
in environmental and regulatory decision-making. 

5) Regulatory considerations. -Science-based reg- 
ulation should: (a) subject all transgenic organisms to 
a similar risk assessment framework, (b) recognize that 
many environmental risks are GEO- and site-specific, 
and therefore that risk analysis should be tailored to 
particular applications, and (c) incorporate a cautious 
approach to environmental risk analysis. 

6) Multidisciplinary training.--Ecologists, agricultur- 
al scientists, molecular biologists, and others need 
broader training to address the above recommendations. 
We strongly encourage greater multidisciplinary train- 
ing and collaborative, multidisciplinary research on the 
environmental risks and benefits of GEOs. 

In summary, we urge scientifically based assessment 
of the benefits and risks of GEOs that are proposed for 
release into the environment, and scientifically based 
monitoring and management for environmental effects 
that may occur over large spatial scales and long time 
frames. GEOs that are phenotypically similar to con- 
ventionally bred organisms raise few new environ- 
mental concerns, but many novel types of GEOs are 
being considered for future development. These in- 
clude baculoviruses that are engineered for more ef- 
fective biological control, microorganisms that pro- 
mote carbon storage, fast-growing fish, and fast-grow- 
ing plants that tolerate cold, drought, or salinity. The 

Ecological Society of America is committed to pro- 
viding scientific expertise for evaluating and predicting 
ecological benefits and risks posed by field-released 

transgenic organisms. 

INTRODUCTION 

Advances in genomics and genetic engineering are 
progressing rapidly, and innovative applications of this 
knowledge are just beginning to be imagined and un- 
derstood. Genes that have been artificially moved into 
an organism's genome, i.e., transgenes, make it pos- 
sible to create organisms with traits that cannot be ob- 
tained through normal sexual reproduction. Transgenes 
are novel, synthetic genes that have never existed in 
nature; minimally, they are composed of a target gene 
sequence flanked by a promoter and other elements that 
may come from different organisms. Transgenic or- 

ganisms are often called "genetically modified organ- 
isms" (GMOs), despite the fact that plants and animals 
have been genetically modified by selective breeding 
since the beginning of agriculture. It is the engineering 
aspect of transgenic organisms that distinguishes them 
from previous varieties (e.g., Snow 2003). In this re- 
port, we use the terms genetic engineering, genetic 

modification, transgenics, and recombinant DNA tech- 
nology interchangeably. 

The goal of predicting how genetic engineering will 
affect organisms that live and disperse outdoors under 
variable biotic and abiotic conditions is a major chal- 

lenge. Phenotypic characteristics, such as an organ- 
ism's size, health, and reproductive capacity, are de- 
termined by complex interactions among its genes and 
its surroundings. It is important to ask how the phe- 
notypes of transgenic organisms differ from those of 
their non-transgenic counterparts, and whether these 
phenotypes can be characterized adequately in small- 
scale experiments. Also, how will receiving popula- 
tions, ecological communities, and ecological process- 
es be affected when vast numbers of genetically en- 
gineered organisms (GEOs) enter managed and un- 
managed habitats? This type of ecological knowledge 
is crucial for reaching defensible decisions about how 
to regulate and monitor transgenic organisms. 

Here we discuss possible risks and benefits of GEOs 
from the perspective of ecological science. Building on 
an earlier paper by Tiedje et al. (1989), we present the 
consensus viewpoint of the Ecological Society of 
America, as formulated by an authoring committee 
with input from the ESA Governing Board and re- 
viewers with expertise in ecology, evolution, genetics, 
agricultural sciences, and microbiology. The topics we 
cover can be evaluated from several perspectives-sci- 
entific, political, socioeconomic, or ethical. The ratio 
of benefits to risks that are attributed to GEOs can be 

perceived very differently by developing vs. industri- 
alized nations, and by different stakeholders within 
each nation. Even within the context of science, there 
is a great deal of debate about how transgenic organ- 
isms should be developed, regulated, and deployed. 
Our goal is to provide ecological insights that should 
be considered prior to release, and recommendations 
for post-release evaluation of GEOs. An assessment of 

possible human health effects of GEOs is beyond the 

scope of this paper. 
Because the commercialization of GEOs is relatively 

recent and is limited to only a few types of crops, many 
of the ecological questions we raise have yet to be 
examined empirically (e.g., Wolfenbarger and Phifer 
2000, Dale et al. 2002, NRC 2002a, b). Some GEOs 
are expected to provide environmental benefits, as out- 
lined in Box 1. However, in this report, we focus more 
on potential environmental risks of GEOs than on their 
benefits for two reasons: risks are a more immediate 
concern for ecologists, regulatory agencies, and the 
public, and many environmental benefits have yet to 
be developed or rigorously documented. We begin with 
an introduction to the current status of transgenic or- 
ganisms, followed by a discussion of potential ecolog- 
ical effects and regulatory challenges. We emphasize 
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Box 1. Examples of GEOs with potential environmental benefits 
See text for details and note that most of these GEOs are still under development. The caveats listed 

below do not include environmental risks, which are discussed in the text. Moreover, the benefits listed 
below do not include human health or socioeconomic benefits: 

1) Transgenic, glyphosate-tolerant crop plants (e.g., Roundup Ready soybean) 
Environmental benefits: 
* These crops can facilitate no-tillage or low-tillage weed management, which 

o conserves topsoil and soil moisture; reduces erosion 
o allows greater carbon sequestration in soil organic matter 

* Glyphosate breaks down more quickly and is more "environmentally friendly" than many other 
herbicides 

Caveats: 
* Glyphosate is the most widely used herbicide in the United States and 

o its use may not be sustainable if weed shifts occur to favor glyphosate-tolerant weeds and/or if 
certain weeds evolve resistance to glyphosatet 

o new alternatives to glyphosate-tolerant crops may be too expensive or difficult for chemical 
companies to develop and commercialize 

2) Crop plants with transgenic resistance to lepidopteran or coleopteran pests (e.g., Bt cotton, Bt corn) 
Environmental benefits: 
* Can reduce the use of broad-spectrum insecticides 
Caveats: 
* May not be sustainable if secondary pests become more problematic and/or if target pests evolve 

resistance to the Bt cropt 
* Above ground, broad-spectrum insecticides are not applied to most of the U.S. corn acreage 

3) Crop plants with transgenic resistance to common diseases (e.g., fungal disease of fruit crops) 
Environmental benefits: 
* Could reduce the use of fungicides and insecticides that currently are used to kill disease vectors 

or disease-causing organisms 
Caveats: 
* May not be sustainable if pathogen evolves resistance to transgenic varietiest 
* Few crops with transgenic disease resistance have been deregulated to date (exceptions include 

virus-resistant squash, papaya, and potato) 
4) Crop plants with higher yields due to one or more transgenic traits 

Environmental benefits: 
* Higher yield per area could reduce pressure on natural areas because less area needs to be cultivated 

for a given amount of yield 
Caveats: 
* Higher yield per area could be an incentive to cultivate transgenic crops on larger areas (assuming 

profits increase with area) 
* Evidence for yield gains above current production levels is not well documented as yet; more 

evidence of higher yields is needed 
5) Decreased lignin production in transgenic, commercial tree plantations 

Environmental benefits: 
* Cleaner paper milling and less pollution of waterways 
Caveats: 
* Early in development, not known if economically viable 

6) Bioremediation of polluted soils using transgenic plants or bacteria 
Environmental benefits: 
* More effective and/or less expensive cleanup of toxic waste sites than with current methods 
Caveats: 
* Early in development, not known if effective in the field or economically viable (see Box 4) 

7) Use of transgenic plants, fish, or microbes as biomonitors to detect pollutants 
Possible environmental benefits: 
* More effective and/or less expensive than current methods, thereby enhancing detection capabilities 
Caveats: 
* Early in development, not known if effective in the field or economically viable 

8) Transgenic pigs with enhanced salivary phytase 
Environmental benefits: 
* Enhanced ability to utilize phytate in plant-derived feeds 

o decreases phosphorus in animal wastes and reduces pollution from manure, which is often used 
as fertilizer in row crops 

Caveats: 
* Early in development, not known if economically viable 

t Caveats about the evolution of resistance also apply to the efficacy of pesticides that are used to manage weeds, 
insects, and diseases of crop plants. 
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the present generation of transgenic crop plants because 
they have been studied most intensively, and we sup- 
plement this with discussions of genetically engineered 
microorganisms, invertebrates, and fish. 

CURRENT STATUS OF GEOs 

Techniques for creating transgenic organisms 

What is genetic engineering and what distinguishes 
it from classical breeding? Plant, animal, and microbial 
breeding consist of three major phases: (1) assembling 
or generating new genetic diversity, (2) selecting and 

testing different genotypes to identify superior varie- 
ties, and (3) the release, distribution, and commercial- 
ization of new progeny (e.g., Gepts 2002). The differ- 
ence between genetic engineering and classical breed- 
ing is in the first phase. In classical breeding, genetic 
diversity can be enhanced by sexual crosses. For ex- 
ample, when plant breeders want to combine the high- 
yielding characteristics of line A with disease resistance 

genes from line B, they cross the two lines and from 
the progeny they select individuals with both high yield 
and disease resistance. Only a small fraction of the 
progeny is likely to exhibit high yield and disease re- 
sistance, without any extraneous unwanted traits. 
Moreover, breeding efforts can be jeopardized at the 
outset by a lack of appropriate genes from sexually 
compatible relatives. Genetic engineering provides a 
powerful alternative because specific genes from any 
source (microbe, plant, animal, or synthetic) can be 
introduced into recipient cells and integrated directly 
into the organism's genome. For example, genes for 
disease resistance would be incorporated into a trans- 
gene and introduced directly into the genome of the 
high-yielding line, avoiding the potential limitations of 
sexual crosses. 

There are several ways in which a transgene can be 
inserted into an organism's genome. In dicotyledonous 
plants, the method used most often relies on the normal 
disease-causing mechanism of a soil pathogen, Agro- 
bacterium tumefaciens. This bacterium carries a mod- 
ified plasmid (a small circle of DNA) that integrates 
new, recombinant DNA into the plant genome and does 
not cause disease. Another widely used method of 
transforming plants is by particle bombardment, which 
is especially useful in monocots, such as corn and rice 
(e.g., Brettschneider et al. 1997). Additional transfor- 
mation methods include the introduction of transgenes 
by electrical (electroporation), physical (silicon fibers, 
microinjection), or chemical (polyethylene glycol) 
techniques. Related approaches can be used to trans- 
form microbes and animals, but animals are often more 
challenging to transform and regenerate than other or- 
ganisms (NRC 2002b). With any of these methods, the 
transformation process is very inefficient, and only a 

small fraction of the cultured cells incorporate the 

transgene (e.g., Birch 1997). Therefore, the transgene 
usually is linked to a selectable marker gene, typically 
a gene encoding herbicide or antibiotic resistance, to 
allow rapid selection of the few cells that incorporate 
the transgene. These cells and tissues are cultured to 

produce whole organisms. 
Methods for creating transgenic organisms are con- 

stantly becoming more sophisticated, and today's 
GEOs will soon be viewed as comparatively primitive. 
Also, new molecular techniques are expected to blur 
the distinction between what is considered to be trans- 
genic and what is not. For example, the strategy of 
silencing native genes by transgenic methods falls into 
this gray area. Another intermediate technique is "di- 
rected evolution," in which new microbial genes are 
selected from mixtures of DNA fragments in laboratory 
cultures. Directed evolution has been used to breed 
bacteria that are better at degrading pesticides and other 
environmental pollutants and to breed viruses for bi- 

ological control (e.g., Soong et al. 2000, Raillard et al. 
2001, Sakamoto et al. 2001). Since organisms modified 
by this method use only natural recombination, albeit 
under artificial conditions, regulatory agencies do not 
consider them to be "genetically engineered." 

Types of transgenic organisms 

Plants.-Crops with transgenic resistance to certain 
herbicides, insects, or diseases are planted widely, es- 

pecially in the United States (Box 2). Future transgenic 
plants may offer a much wider array of products, in- 

cluding applications in rangelands, forests, landscap- 
ing, nutrition, pharmacology, biological control, pro- 
duction of industrial chemicals, and bioremediation 
(Table 1, Boxes 2 and 6; Dunwell 1999). Transgenic 
plants with enhanced tolerance to abiotic stresses such 
as salinity, drought, or freezing, to biotic stresses such 
as pathogens, and to anthropogenic stresses such as 

heavy metal contamination are under development. 
Work is progressing on the use of genetically engi- 
neered (GE) plants for phytoremediation of contami- 
nated soils, sometimes using natural or altered trans- 

genes from bacteria (e.g., Rosser et al. 2001, Chaudhry 
et al. 2002). Transgenic tree plantations potentially 
could have trees with lower lignin content (for cleaner 

paper milling), higher yields, and sterile reproductive 
structures (Strauss et al. 2001, Pilate et al. 2002). Trans- 
genic plants that produce pharmacologically active pro- 
teins, vitamins, industrial polymers, and those that im- 
prove qualities of animal feed have reached the field- 
testing stage of development. Food plants with reduced 
allergenicity also are under development. One type of 
commercially produced transgenic corn manufactures 
avidin, a chemical used in medical testing (Hood et al. 
1997). 
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Box 2. Food plants with transgenic resistance traits 

The first transgenic organisms to be widely used on a regional scale were developed by large agrochemical 
companies (e.g., Monsanto, Syngenta, Dow, DuPont) and, independently, by the People's Republic of 
China. In 2002, four countries (United States, Argentina, Canada, and China) accounted for 99% of the 
global area planted with transgenic crops (see James 2002). By 2003, an estimated 80% of the soybean 
acreage in the United States had transgenic herbicide tolerance (USDA 2003). At least 120 transgenic 
varieties of sugar beet, chicory, corn, cotton, flax, melon, papaya, potato, oilseed rape, rice, soybean, 
squash, and tomato have been approved for commercial use, mostly in the United States (see ISB 2004b). 

Four crops, soybean, corn, cotton, and oilseed rape, predominate the acreage planted to date. These 
"first generation" transgenic crops have specific traits to improve the efficiency of agricultural production. 
Most commercialized transgenic crops have a single transgene for either herbicide tolerance or certain 
types of insect resistance, while a few varieties have more than one transgenic trait. Transgenic traits in 
commercialized crops also include altered fruit ripening, male sterility (for hybrid seed markets), and other 
characteristics. Many major food crops have been genetically engineered for virus resistance, although 
relatively few of these transgenic crops have been released commercially. Three examples of commer- 
cialized transgenic crops are presented here. 

Virus-resistant papaya.-Papaya (Carica papaya) is a small, short-lived tree originating in Central and 
South America and grown throughout the tropics. Papaya ringspot virus (PRSV) is a virus that can decimate 

papaya plantations, and cultivation of papaya in Hawaii was severely threatened by an epidemic of PRSV 
in the 1980s. The virus is transmitted by aphids, but insecticide treatments against aphids are not effective. 
Resistance to either the virus or its insect vector has not been found in papaya germplasm, so transgenic 
methods were used to breed for resistance to the virus. In the late 1980s, Beachy et al. (1990) discovered 
the general principle that the transgenic coat protein of a virus could provide plants with resistance to the 
same virus. Subsequently, researchers were able to transform papaya with the coat protein gene of PRSV 
to obtain a line that was highly resistant to the local strain of the virus in Hawaii (Fig. 1; Gonsalves 1998). 
Following regulatory approval by the EPA and USDA (APHIS) and consultation with the FDA, licenses 
were obtained from the holders of patents on technology to develop the transgenic papaya varieties, which 
are currently grown in Hawaiian plantations. 

Roundup Ready soybean.-In the United States, herbicides account for >90% of the pesticides farmers 
use on the major field crops (corn, soybeans, wheat, and cotton). The introduction of soybean cultivars 
with transgenic resistance to glyphosate (commercially known as Roundup Ready soybean) allows growers 
to replace multiple herbicide treatments spread out over the growing season by one or two treatments of 
this broad-spectrum herbicide (Reddy and Whiting 2000). Furthermore, the herbicide can be applied after 
the soybean plants have emerged, allowing more efficient weed control and less dependence on crop 
rotation and/or tillage as ways to manage broad-leaved weeds. To date, few weed species have evolved 
resistance to this effective and widely used herbicide. 

Bt corn.-Bacillus thuringiensis (Bt) is a soil bacterium with many strains that produce a variety of 

crystalline protein endotoxins, each of which affects specific groups of insects. Thus, different B. thurin- 
giensis strains are toxic to lepidopterans (butterflies and moths), coleopterans (beetles), and dipterans 
(mosquitoes, black flies, and fungus gnats). In these insects, small amounts of the toxin (parts per billion) 
damage the intestinal system, and the insects typically die within days of a single feeding. One Bt strain 
is commonly used in both organic and conventional agriculture as an insecticidal spray, and is not toxic 
to humans or most other organisms, including honeybees and plants. Genes coding for Bt toxins have 
been isolated and transformed into the genome of several crop plants, including corn, cotton, and potato. 
Several of these so-called cry genes (for crystal protein) have been used, including crylAb, crylAc, crylF, 
and cry9C (against moth larvae); cry3A and cry3C (against beetles and beetle larvae); and cry3Bb and a 
combination of cry34 and cry35 (against corn rootworms). Some of these Bt proteins differ in their stability 
characteristics. For example, the protein from cry9C is more resistant to degradation in conditions sim- 
ulating those in the human gut. Hence, this protein was deemed to have a potential for allergenicity and 
was authorized by the EPA in the Starlink variety of Bt corn for animal use only. Nevertheless, it ended 
up in corn chips and other food products, which had to be recalled. A possible health benefit of other Bt 
corn is lower levels of mycotoxin in regions where damage from the eastern corn borer is extensive (e.g., 
Clements et al. 2003). 
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TABLE 1. Examples of current and planned GEOs. 

Function or product of 
Host organism introduced gene Intended use 

Microbes 
Pseudomonas syringae, deletion of ice-nucleating cell mem- "ice minus bacteria" sprayed on crops 

P. fluorescens brane protein to protect from frost 
Pseudomonas fluorescens several genes for hydrocarbon degra- detect and degrade pollutant (polycy- 

dation and light production clic aromatic hydrocarbons); fluores- 
cent marker 

Pseudomonas putida 4-ethylbenzoate-degrading enzyme degradation of pollutant (benzene de- 
rivatives) 

Clavibacter xyli Bt crystal protein toxin colonize plant vascular tissue to pro- 
tect plant from insect pests 

Baculoviruses scorpion neurotoxin; proteases from biological control of specific insects 
rat, human, and flesh flyt (see Box 3) 

Plants 
Corn, cotton, potato insect-specific toxin kill or deter target insects eating plant 

tissues (many lines deregulated) 
Soybean, cotton, corn, oilseed glyphosate resistance ability to withstand application of gly- 

rape, wheat, turfgrass, poplar phosate herbicide (many lines dereg- 
ulated) 

Squash, papaya viral coat protein provide resistance to specific viruses 
(some lines deregulated) 

Corn Pharmaceutical and industrial com- purify as inputs into other commercial 
pounds, e.g., avidin and many others products 

Rice provitamin A provide vitamin A precursor for better 
nutrition 

Rice ferritin increase iron content of rice to reduce 
anemia 

Strawberry antifreeze polypeptide resistance to freezing 
Tomato anti-sense polygalacturonase delay ripening when red, allowing 

more time on-vine (Flavr Savr brand 
was deregulated, but is no longer 
produced commercially) 

Poplar modified lignin enhanced paper-making qualities; less 
pollution during milling 

Animals 
Pink bollworm marker and sterility genes research method for tracking dispersal 

of adult moths; reduce moth popula- 
tions by suppressing mating 

Mouse virus-neutralizing monoclonal antibody model system for testing protection 
against viral encephalitis 

Atlantic salmon growth hormone accelerated growth rate, improved feed 
conversion efficiency (now under 
regulatory review) 

Zebra fish fluorescent proteint pet fish that fluoresce under natural 
and ultraviolet light (sold commer- 
cially) 

Pig insulin-like growth factor I accelerated growth rate, improved feed 
conversion efficiency, leaner carcass 
composition 

Pig phytase ability to utilize phytate in plant-de- 
rived feeds, decreasing phosphorus 
in wastes 

Pig human factor VIII secrete blood clotting factor in milk, to 
be administered to hemophiliacs 

Goat human tissue plasminogen activator production of anti-clotting agent 
Sheep human oal anti-trypsin production of agent for treatment of 

asthma and emphysema 

Notes: Examples have been modified from Hallerman (2002) and, where applicable, ISB (2004a). This is not a compre- 
hensive list, but rather a sampling of the types of traits under consideration. A few of these organisms have been approved 
in the United States for commercial production, as noted (see intended use). 

t Source: Harrison and Bonning (2001). 
$ Source: (http://www.glofish.com/). 



384 ESA REPORT Ecological Applications 
Vol. 15, No. 2 

Box 3. Biological control of insects using GE pathogens 

Biological control has provided a safe and effective alternative to the use of pesticides for the control 
of many agricultural pests. Recently, genetic modification has been used to enhance the effectiveness of 
several insect pathogens, including bacteria, a variety of baculoviruses, nematodes, and fungi (Lacey et 
al. 2001). In general, most efforts have focused on increasing the speed of action of these biocontrol 
agents, since most pathogens need time to develop a fatal infection. To date, the most advanced work has 
been carried out with Bacillus thuringiensis (Bt) and the baculoviruses (Cory 2000, Harrison and Bonning 
2001), although genetic modification of insect-killing fungi (St. Leger and Roberts 1997) and nematodes 
(Gaugler et al. 1997) is receiving growing attention. Baculoviruses are already used successfully as bi- 
ological control agents in some systems. For example, the nuclear polyhedrosis virus of the soybean 
caterpillar, Anticarsia gemmatalis, is used on approximately 1 million ha of soybeans in Brazil (Moscardi 
1999). Recently, there has been considerable effort to increase baculovirus efficiency by inserting genes 
that express toxic proteins, such as insect specific scorpion toxins, mite neurotoxin, diuretic hormone, and 
juvenile hormone esterase (Moscardi 1999). Field tests have shown some success in increasing the speed 
of action for some constructs, but relatively few large-scale tests have been carried out, and no recombinant 
baculoviruses have been registered for commercial use. Possible risks associated with GE viruses are 
discussed in the text. 

Viruses, microorganisms, and algae.-Most genetic 
modification of viruses intended for environmental re- 
lease has focused on baculoviruses (Cory 2000). Non- 
transgenic baculoviruses are already used for biological 
control of insects (Box 3), and researchers have tried 
to increase their efficiency by inserting genes that ex- 
press toxic proteins, such as insect-specific scorpion 
toxins (Maeda et al. 1991). To date, work with trans- 
genic baculoviruses has taken place under contained 
conditions or in small-scale field tests, and no bacu- 
loviruses have been released commercially. 

Transgenic bacteria and yeasts are used widely to 
manufacture biologically based products in medicine, 
food processing, and agriculture (e.g., pesticides), but 
most of these GE products are produced indoors. For 

example, transgenic Escherichia coli that produce hu- 
man insulin have replaced animal-derived insulin for 
medical uses; also, genetically engineered bacteria pro- 
duce rennet, which is used commonly by cheese pro- 
cessors in the United States and elsewhere. Bovine 
growth hormone produced by transgenic bacteria has 
been used to increase milk production in many U.S. 
dairy farms. Transgenic microorganisms are being de- 
veloped for bioremediation of toxic compounds (Box 
4), and for removing excess carbon dioxide from the 
atmosphere. Experimental field tests of microorgan- 
isms intended for release into the environment include 
bacteria with visual markers, biosensors of toxic 
chemicals, insecticidal properties, and reduced viru- 
lence. 

FIG. 1. Field plot in Hawaii showing papaya 
trees with and without transgenic disease resis- 
tance (photo courtesy of D. Gonsalves). The 
small, yellowish trees on the left have the ring- 
spot virus, whereas the larger, transgenic trees 
on the right do not (see Box 2). 



April 2005 ESA POSITION PAPER-GEOs AND THE ENVIRONMENT 385 

Box 4. Bioremediation using GE microbes 

Twenty years ago, microbial GEOs were projected to be among the most extensive GEO products for 
environmental release (e.g., references in Tiedje et al. 1989). Their previous use in bioremediation, bio- 
control, and waste treatment, along with their relative ease of genetic modification and potential for rapid 
growth, led to this perception. Concern over environmental releases of GE microbes was high because 
their small size could lead to rapid dispersal and there would likely be no means to recall such small, 
numerous organisms if problems emerged. However, it is very difficult to manage microbial populations 
in the field for a reliable economic benefit, whether transgenic or not. This fundamental barrier has diverted 
interest from microbial GEOs to other approaches, and earlier expectations have not been met. Nonetheless, 
some interest remains in microbial GEOs, but with more consideration of the unique advantages and 
limitations of microbes. 

The development of microbial GEOs for bioremediation remains an active field of research because 
cleanup of toxic sites is so difficult and costly, and because these sites are often isolated, restricted in 
access, and altered from their native condition. GE strategies have involved construction of biosensors to 
monitor pollutant concentrations; production of biosurfactants to increase pollutant uptake by other mi- 
crobes; adding missing enzymes to complete biodegradation pathways; improving those enzymes, often 
by directed evolution; altering the regulation of biodegradation gene expression (e.g., to achieve consti- 
tutive, over-expression); and placing the biodegradation genes in a more suitable host. Primary targets 
are microbes that can be made to grow on PCBs, chlorinated ethylenes (PCE, TCE), explosives (TNT), 
and polynuclear aromatic hydrocarbons (PAHs), which are the most problematic environmental pollutants 
in the industrialized world. 

Production of micro- and macroalgae is an important 
sector of world aquaculture, and there is increasing 
interest in developing transgenic algae for applications 
such as food, animal feed, polysaccharides (e.g., car- 
rageenan), pharmaceuticals, fuel, and bioremediation 
(e.g., Stevens and Purton 1997, Ask and Azanza 2002). 
Transgenic unicellular algae are being developed as a 
way to deliver vitamins, vaccines, and growth hor- 

mones to shrimp, fish, chicken, and other animals (R. 
Sayre, personal communication). 

Animals.-Animals have been genetically engi- 
neered to grow faster, resist diseases, tolerate cold, pro- 
duce organs for transplants, or produce biologically 
active, therapeutic proteins (NRC 2002b; Table 1). 
Much of this research is still exploratory. Fast-growing 
salmon that will increase production of farm-raised fish 

FIG. 2. Non-transgenic and transgenic coho 
salmon (Oncorhynchus kisutch) at one year of 
age (photo courtesy of R. Devlin). The larger 
fish have a transgene for faster growth rate. 
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Box 5. Reducing insect-borne disease 

Vector-borne diseases are among the most intractable of human diseases (Beatty 2000). Diseases such 
as malaria, dengue, leishmania, trypanosomiasis, West Nile encephalitis, and yellow fever are resurgent 
throughout much of their traditional geographic range and are emerging in many new areas. Hundreds of 
millions of people are infected with these diseases annually and millions die each year, especially in 
economically disadvantaged populations. The resurgence of diseases that were previously controlled is 
due in part to the development of insecticide resistance in vector populations, the development of drug 
resistance in parasites, the shrinkage of public health programs for vector control, and the lack of effective 
vaccines for many diseases (Beatty 2000). 

The resurgence of vector-borne diseases has led to interest in the genetic manipulation of vectors to 
reduce transmission competence. Most research has focused on three major objectives: (1) the development 
of efficient transformation of the targeted vector species; (2) the identification of parasite-specific molecules 
that impair competence; and (3) the development of a mechanism to drive the competence-reducing 
molecules through the vector population (Beatty 2000). Proposed drive mechanisms include transposable 
elements, densoviruses, and bacterial symbionts of the vectors such as Wolbachia. In some disease systems, 
such as Chagas disease, researchers have focused on genetic engineering of the bacterial symbionts them- 
selves to express and release transgene products that are deleterious to the disease agent into insect tissues 
(Durvasula et al. 1997). In the Chagas system, the most promising drive mechanism relies simply on the 
feces-eating behavior of the insect vector to disperse the recombinant symbiont, Rhodococcus rhodnii 
(Durvasula et al. 1999). The disease system receiving the most attention is undoubtedly malaria, but 
success in this complex arena may prove to be elusive (Spielman et al. 2001, Enserink 2002). Although 
mosquitoes have been transformed to express antiparasitic genes that makes them inefficient vectors (Ito 
et al. 2002), such genetic modification often reduces their fitness (Catteruccia et al. 2003). 

are currently being considered for commercial release 
(Fig. 2). Expression of introduced growth hormone 
genes, usually from the same species, results in several- 
fold faster growth rates in salmon, tilapia, and mud 
loach (Devlin et al. 1994, Rahman and Maclean 1999, 
Nam et al. 2001). Several transgenic applications have 
more novel goals, such as creating medaka and mum- 
michog that can be used as biomonitors to detect mu- 
tagens in confined aquatic environments (Winn et al. 
2000). For shellfish, significant technical challenges 
have yet to be overcome before transgenic improve- 
ment is feasible. Research on transgenic invertebrates 
has focused on biological control methods for insect 
pest management and on public health applications, 
such as the production of vector insects that are in- 
capable of transmitting disease (Box 5; Hoy 2003, Pew 
Initiative on Food and Biotechnology 2003). Other in- 
novative applications under investigation include in- 
dustrial production of spider silk by transgenic goats 
and reduced phosphorus output in manure from ge- 
netically engineered pigs, which addresses a key issue 
for the management of confined animal feed units 
(Golovan et al. 2001). 

In summary, opportunities for genetically engineer- 
ing many forms of life are likely to increase as poten- 
tially useful genes are identified and as the techniques 
to achieve integration and reliable inheritance of trans- 

genes are developed for a broader range of species. 
Transgenesis is used widely as a research tool by ac- 
ademic groups, government agencies, and biotechnol- 
ogy companies in many developed and developing 
countries. The pace at which new GEOs are released 
into the environment and the types of GEOs that are 
developed will depend largely on economic and polit- 
ical incentives, as well as improved scientific methods 
for achieving desired results. Here we focus primarily 
on the diversity of GEOs that are currently available 
or known to be under development. 

Unintended phenotypes 

Recombinant DNA methods have been viewed as 
particularly precise because the inserted gene sequenc- 
es can be characterized and monitored. Nonetheless, 
the process of transformation can result in unintended 
effects that may be difficult to detect under laboratory 
conditions. A major cause of unintended phenotypes, 
known as position effects, stems from the fact that 
transgenes often are inserted into random chromosomal 
locations, often at multiple sites in the genome. While 
targeted insertion is possible in viruses, bacteria, and 
yeasts, this goal has been elusive in more complex 
organisms (e.g., Puchta 2002). The specific locations 
of transgenic insertions can influence the level and con- 
sistency of gene expression, and the magnitude of these 
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position effects can range from minor to lethal. Trans- 

genic DNA sequences may interrupt native genes or 
the promoter sequences that regulate them. Further- 
more, the insertion of transgenic DNA may bring about 
small-scale rearrangements of the transgene and native 
DNA sequences at the insertion site (e.g., Pawlowski 
and Somers 1998, Svitashev et al. 2000, 2002, Windels 
et al. 2001), and multiple copies of the transgenes are 
often inserted unintentionally. If individuals with mul- 
tiple insertions are retained for breeding, redundant 

copies of transgenic DNA can interact with each other 
to cause gene silencing. These types of unintended ef- 
fects will continue to occur until more sophisticated 
methods are available for inserting transgenes into pre- 
determined locations on the genome. 

Another cause of unintended phenotypes is inter- 
actions among the transgene and native genes. Few 

examples have been identified so far, but these epistatic 
interactions are widespread among nontransformed or- 

ganisms and are expected to be common in GEOs as 
well. In yeast, for example, experimental studies 
showed that individual genes interacted with 3-8 other 

genes (Hartman et al. 2001). Other causes of unin- 
tended phenotypes include pleiotropic effects of trans- 

genes (i.e., transgenes affecting multiple traits) and mu- 
tations that occur when small, undifferentiated masses 
of transformed cells are regenerated into whole organ- 
isms in the laboratory (e.g., Dale and McPartlan 1992). 
Often, the causes of unintended phenotypes are difficult 
to identify. For example, Saxena and Stotzky (2001) 
reported that several commercial varieties of transgenic 
corn expressing the Bt toxin from the bacterium Ba- 
cillus thurigenenesis had higher lignin content than 

non-transgenic corn, perhaps due to pleiotropy. In Ar- 

abidopsis thaliana, which is mainly self-pollinating, 
Bergelson et al. (1999) found that plants with different 
insertions of the same transgene exhibited a tenfold 
difference in their outcrossing rates. 

Of course, unintended phenotypes can occur during 
non-transgenic breeding as well, often because of genes 
that are closely linked to the primary gene of interest. 
For example, unwanted health and plant disease risks 
have arisen in conventionally bred celery, potato, and 
corn, through the appearance of toxic compounds (NRC 
2000). So far, we are not aware of health or environ- 
mental problems that have occurred due to unintended 

phenotypes of commercially produced GEOs. Like 
their non-transgenic counterparts, GEOs with obvious 
abnormalities are not used in commercial lines. Ab- 
normal individuals or their progeny can be eliminated 
during extensive screening among locations and years, 
which is an integral part of any breeding program. 
However, small unintended effects may remain unde- 
tected because they may depend on cumulative action, 

specific environmental conditions, or introgression into 
different genetic backgrounds. 

Molecular methods for mitigating unwanted effects 

Recommendation 1 
Early planning in GEO development.-GEOs 

should be designed to reduce unwanted environ- 
mental risks by incorporating specific genetic fea- 
tures, which might include sterility, reduced fitness, 
inducible rather than constitutive gene expression, 
and the absence of undesirable selectable markers. 

Here, we describe a few of the many strategies by 
which transgenic approaches to breeding could be im- 

proved to reduce environmental risks. One concern per- 
tains to crop plants in which the selectable marker is 
a gene for antibiotic or herbicide resistance. These 
genes are not needed in the final product, and several 
alternatives have been proposed, such as selection in 
a high osmolite (sugar) medium (Todd and Tague 
2001). Alternatively, it is possible to excise the se- 
lectable marker genes using a variety of methods (Hare 
and Chua 2002). Some biologists have proposed ge- 
netic mechanisms for excising the transgenes them- 
selves before an organism reproduces, but this concept 
is probably years away from becoming practical (Keen- 
an and Stemmer 2002). 

In some cases, it is desirable to prevent GEOs from 

proliferating and interbreeding with native populations. 
This problem could be lessened by transgenic methods 
to limit gene flow (e.g., Daniell 2002, NRC 2004). 
Another goal is to prevent harm to other organisms 
from plant-produced toxins. Nontarget effects of toxins 
such as Bt proteins could be reduced if the expression 
of transgenes was controlled by tissue-specific or de- 

velopmental stage-specific promoters rather than by 
constitutive promoters. Alternatively, the transgenes 
could be regulated by inducible promoters that are ac- 
tivated by external conditions, such as heat, chemical 

sprays, or biotic factors (e.g., insect damage). It may 
be possible to delay the evolution of resistance in in- 
sects by combining several types of high-dose Bt genes 
in a single transgene construct (e.g., Gould 1998). In 

summary, a wide array of environmental goals poten- 
tially could be addressed during the early planning and 

design of GEOs. 

ECOLOGICAL EFFECTS OF GEOs 

Recommendation 2 

Analyses of environmental benefits and risks.- 
Rigorous, well-designed studies of the benefits and 
risks associated with GEOs are needed. 

a) Ecologists, evolutionary biologists, and a wide 
range of other disciplinary specialists should 
become more actively involved in research 
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TABLE 2. Major environmental concerns regarding transgenic organisms. 

Process Potential ecological consequences 

Transgenic organisms persist without Transgenic organisms that are able to spread and maintain self-sustaining popula- 
cultivation tions could disrupt biotic communities and ecosystems, leading to a loss of bi- 

ological diversity. 
Transgenic organisms interbreed Incorporation of transgenes could result in greater invasiveness or loss of biodi- 

with related taxa versity, depending upon the amount of gene flow from generation to genera- 
tion and the transgenic trait(s). 

Horizontal gene flow The transfer of genes through nonsexual means is common in some microbes but 
rare in plants and animals. Ecological consequences would depend on amount 
of gene flow and the transgenic trait(s). 

Changes in viral disease In transgenic virus-resistant organisms, recombination between viral transgenes 
and invading viruses could lead to increased virulence of a disease and unde- 
sirable effects on wild hosts in natural habitats. 

Nontarget and indirect effects Loss of biodiversity, including species of conservation concern, may occur, as 
well as altered community or ecosystem function, including reduced biological 
pest control, reduced pollination, altered soil carbon and nitrogen cycling, and 
secondary pest outbreaks. 

Evolution of resistance Resistance to pesticides (including pesticide-producing plants) can lead to greater 
reliance on chemicals and other pest control methods that are damaging to the 
environment, including unregistered pesticides under emergency exemptions. 
This applies to insects, weeds, and other pests. 

Note: Note that few types of transgenic organisms have been released into the environment, and therefore few of the 
potential ecological consequences listed have been documented to date (see Ecological effects of GEOs for details). 

aimed at quantifying benefits and risks posed 
by GEOs in the environment. 

b) Because of the inherent complexity of ecolog- 
ical systems, this research should be carried out 
over a range of spatial and temporal scales. 

c) We further recommend that the government 
and commercial sectors expand their support 
for environmental risk assessment (including 
environmental benefits) and risk management 
research. 

Here, we evaluate some of the benefits and concerns 
associated with GEOs that are already in use or under 
development (Table 2). Greater attention has been paid 
to risk assessment, which involves identifying possible 
unwanted effects (hazards) and the likelihood that these 
hazards will occur, as compared to benefits of GEOs 

(e.g., Boxes 1-6). Tiedje et al. (1989) provide a useful 
summary of how ecological risks of novel GE traits 
can be evaluated for different taxa and for the envi- 
ronments into which GEOs are released. Other broad 
reviews of this topic include Rissler and Mellon (1996), 
Snow and Moran-Palma (1997), Ammann et al. (1999), 
the National Research Council (e.g., 2000, 2002a, b, 
2004), CAST (2002), Dale et al. (2002), Letourneau 
and Burrows (2002), and Conner et al. (2003). Below 
we discuss the types of ecological knowledge that can 
contribute to risk assessment of GEOs. 

Gene flow 

Recommendation 3 
Preventing the release of unwanted GEOs.-Strict 

confinement of GEOs is often impossible after large- 

scale field releases have occurred. Therefore, we rec- 
ommend that the large-scale or commercial release 
of GEOs be prevented if scientific knowledge about 

possible risks is inadequate or existing knowledge 
suggests the potential for serious unwanted effects. 

Gene flow among crops and their relatives.-Be- 
cause transgenes are inherited in the same way as nat- 

urally occurring genes, they have the potential to per- 
sist indefinitely in cultivated or free-living populations. 
Transgenic pollen and seeds can disperse into seed 
nurseries, commercial fields, and local landraces (e.g., 
Quist and Chapela 2001, 2002, Beckie et al. 2003). 
Subsequently, these transgenes can continue to spread 
among other plants of the same species, especially if 

they confer traits that are favored by artificial or natural 
selection (e.g., traits that increase tolerances to abiotic 
or biotic stresses) or if transgene flow is maintained 
from a large source population. The ecological and 

evolutionary consequences of crop-to-crop gene flow 
are just beginning to be investigated. One possible con- 

sequence is that exposure of nontarget organisms (in- 
cluding humans) to novel proteins could be greater than 

expected based on known acreages of a particular trans- 

genic crop. 
Crop-to-wild gene flow occurs when transgenic 

plants become established in unmanaged populations 
and/or when they interbreed with related species. Gene 
flow between crops and free-living, noncultivated 

plants occurs when pollen moves from a crop to its 
wild or feral relative (or vice versa) and genes from 
their offspring spread further via the dispersal of pollen 
and seeds. Many crops hybridize spontaneously with 
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Box 6. Restoring the American chestnut 

Eventually it may be possible to use biotechnology to propagate rare and endangered species. Whether 
these species could ever become reestablished as wild populations is uncertain, but this has not prevented 
researchers from trying. For example, transgenic methods might help species that are threatened by a 
primary overriding factor, such as single disease. In North America, the introduction of exotic pathogens 
has severely threatened populations of American chestnut (Castanea dentata), American elm (Ulmus 
americana), and butternut (Juglans cinerea). Prior to the arrival of a fungal blight (Cryphonectria par- 
asitica) in the early 1900s, the American chestnut was a dominant species in eastern hardwood forests. 
Now, stump sprouts are common but the sprouts typically die from chestnut blight before they reach sexual 
maturity. Native trees with resistance genes have not been found, but a related species from Asia is resistant 
to the blight. In Chinese chestnut (C. mollisima), resistance is conferred by two or three incompletely 
dominant genes that have been backcrossed into surviving American chestnuts. Only a portion of back- 
crossed progeny from these lines are expected to be resistant, however, because the resistance genes are 
additive and it appears that at least two must be homozygous to obtain resistance (Mann and Plummer 
2002; W. A. Powell, personal communication). To augment this backcrossing program, several research 
teams are working on transgenic methods to introduce dominant resistance genes into native chestnut trees 
(Mann and Plummer 2002). They have made progress in refining transformation methods, screening 
candidate resistance genes, and developing strategies to address environmental and social concerns (W. 
A. Powell, personal communication). If this effort is successful, other pests such as the chestnut gall wasp 
(Dryocosmus kuriphilus) still may be a problem, but managed and horticultural populations of chestnut 

probably could be maintained. 

wild or weedy relatives that occur nearby (e.g., Ells- 
trand et al. 1999, Messeguer 2003). In the United 
States, for example, these include rice, squash, oilseed 
rape, sunflower, sorghum, wheat, sugar beet, straw- 
berry, radish, lettuce, poplar, and many grasses and 
horticultural plants (NRC 2000b, Ellstrand 2003). 
Some crops, such as oats, radish, carrot, and oilseed 
rape, also can proliferate as weeds. On the other hand, 
corn, cotton, soybean, potato, and many other species 
do not have wild or weedy relatives in the United 
States. Thus, the extent of gene flow between crops and 
weeds is expected to vary among crops and geographic 
regions, and should be examined carefully wherever 
transgenic crops are cultivated. 

Currently, it is not possible to prevent gene flow 
between sexually compatible species that inhabit the 
same region because pollen and seeds disperse too eas- 
ily and too far to make complete reproductive con- 
finement practical (NRC 2004). Therefore, it is im- 
portant to determine which types of transgenic crops 
have novel traits that might persist and cause problems. 
A first step is to determine how widely the transgenes 
will be dispersed, and whether new transgenic traits 
are likely to have positive or negative effects on the 
fitness of wild or weedy organisms. Deleterious trans- 
genic traits might persist if very high rates of gene flow 
from the crop allow these transgenes to become fixed 
in adjacent populations, but other situations will allow 
these traits to be purged by natural selection. In the 

few studies that address the question of "fitness costs," 
transgenes that conferred resistance to herbicide, in- 
sects, or disease in crop plants were not associated with 
a decrease in survival, yield, or fecundity of wild rel- 
atives (e.g., Snow et al. 1999, 2003, Burke and Rie- 

seberg 2003). The "fitness benefits" associated with 

transgenic traits depend on the type of trait and the 

ecology of recipient populations. With regard to her- 
bivores, studies of both native and exotic species sug- 
gest that herbivores can have a dramatic impact on plant 
population dynamics (e.g., Guretzky and Louda 1997, 
Rees and Paynter 1997). Also, several recent studies 
have reported negative impacts of microbes on the 

growth, survivorship, and reproduction of plants in nat- 
ural populations (e.g., Power 2002, Mitchell and Power 
2003, Callaway et al. 2004). Snow et al. (2003) re- 

ported up to 55% greater seed production in wild sun- 
flowers due to the expression of a Bt transgene for 
resistance to lepidopterans. This suggests that fitness 
benefits of individual transgenes could be surprisingly 
large. In successive generations, these types of trans- 

genic traits could become common in natural popula- 
tions. 

If fitness-enhancing transgenes become established 
in natural populations, the populations may or may not 
become larger, more widespread, or more difficult to 

manage, depending on ecological factors that limit pop- 
ulation growth. In the short term, the spread of trans- 
genic herbicide resistance to weedy relatives of crop 
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plants could favor larger weed populations, creating 
logistical and economic problems for farmers. Delay- 
ing increases in populations of herbicide-resistant 
weeds is a basic goal of sustainable agricultural prac- 
tices. Over the longer term, certain weeds may benefit 
from transgenes that confer faster growth and resis- 
tance to herbivores, diseases, or harsh growing con- 
ditions. Initially, the effects of one or a few transgenes 
may be difficult to detect unless weed populations are 
released from strongly limiting factors (e.g., drought 
stress or salinity). For most weeds, little is known about 
the extent to which various ecological factors limit the 
weed's abundance, competitive ability, or geographic 
range. These data gaps present challenges for predict- 
ing whether transgenic weeds could become more dif- 
ficult to manage than those that lack novel transgenes. 

Gene flow in aquatic GEOs.-Genetically engi- 
neered fish and other aquatic species have the potential 
to disperse and proliferate in natural ecosystems. Com- 
mercial aquaculture operations have routine and often 
significant escape of their stock due to problems with 
equipment, handling or transport operations, predator 
intrusion, storms, and other factors (CEQ and OSTP 
2000). Because of the possibility of escape, we antic- 
ipate possible ecological harm to conspecific popula- 
tions and other species with which aquatic GEOs in- 
teract (Kapuscinski and Hallerman 1990, Hallerman 
and Kapuscinski 1992, Muir and Howard 1999, 2002, 
Hedrick 2001, NRC 2002b). These effects could in- 
clude heightened predation or competition, coloniza- 
tion by GEOs of ecosystems outside the native range 
of the species, and alteration of population or com- 
munity dynamics due to activities of the GEO. In ex- 
treme cases, these effects might endanger or eliminate 
non-transgenic conspecifics, competitors, prey, or 
predators. 

Once they are released, fertile GE fish could inter- 
breed with natural populations. Genetic or evolutionary 
impacts of interbreeding will depend on the fitness of 
transgenic genotypes in the wild (Muir and Howard 
1999, Hedrick 2001). Fertile transgenic Atlantic salm- 
on might interbreed with endangered stocks in the 
northeastern United States, but it is difficult to predict 
the fitness of these transgenic fish (CEQ and OSTP 
2000, Devlin et al. 2004). Transgenic salmon express- 
ing a growth hormone consume more food and develop 
faster than control fish (Stevens and Sutterlin 1999), 
but these traits could increase their susceptibility to 
predation and stressful environments. Given that the 
findings to date reveal contradictory effects of en- 
hanced growth on different components of fitness, it is 
difficult to assess the likely ecological outcome of 
transgenic salmon escape (NRC 2002b). 

Looking toward future aquatic GEOs, it is useful to 
consider the dispersal dynamics of crustaceans and 

mollusks. Many freshwater crustaceans such as cray- 
fishes are capable of overland dispersal; also, they are 
produced in large, outdoor ponds where confinement 
is difficult. Marine crustaceans have planktonic larvae 
that drift in the water column with great potential for 
dispersal, thereby complicating confinement options 
(ABRAC 1995). Possible environmental hazards posed 
by escape of transgenic shellfish into natural ecosys- 
tems have not yet been thoroughly considered, and little 
research has focused on this topic (NRC 2002b). 

A framework has been developed for identifying and 
managing risks posed by genetically modified fish and 
shellfish (ABRAC 1995). Production in indoor, recir- 
culating aquaculture systems would be preferable to 
that in the floating net-pen systems that dominate pro- 
duction of salmonids, as net pens do not provide con- 
sistently reliable physical confinement (Hallerman and 
Kapuscinski 1992, CEQ and OSTP 2000). Where phys- 
ical confinement is not strict, reproductive confinement 
is needed. Proponents of transgenic salmon intend to 
produce all-female triploid stocks, but 100% triploid 
induction may be difficult to achieve at a commercial 
scale (NRC 2004). Other methods for achieving reli- 
able reproductive confinement of aquatic GEOs need 
to be developed (Devlin and Donaldson 1992). 

Horizontal gene flow.-Horizontal (nonsexual) gene 
flow between species is extremely rare in plants and 
animals, except over long evolutionary time frames, 
but ongoing horizontal gene flow can be common in 
microbes. Complete genome sequences of free-living 
bacteria and archaea show that from 1% to 20% of an 
organism's genome derives from foreign DNA, mostly 
from other prokaryotes but some from eukaryotes such 
as metazoa (Ochman et al. 2000, Koonin et al. 2001). 
This foreign DNA is now recognized as a major source 
of innovation in microbial evolution. Horizontally 
transferred genes usually carry nonessential but highly 
selectable traits, such as antibiotic resistance, patho- 
genicity, and enzymes to metabolize new resources- 
in essence, providing a means for the species to explore 
new environments. Genes added by transgenic methods 
may transfer to other bacterial species in the same man- 
ner as other genes. 

Horizontal gene transfer, however, is dependent on 
microbial density, and its occurrence is less frequent 
among more distantly related taxa. Hence, horizontal 
transfer of a transgene would be most likely in more 
dense, non-starved microbial communities such as in- 
testinal tracts, biofilms, rhizospheres, plant nodules, 
fresh detritus, and pathogen lesions (cf., Bertolla and 
Simonet 1999). In general, there is a reasonable prob- 
ability of genetic exchange between recombinant mi- 
crobes and indigenous microbes, but possible hazards 
of such genetic exchange will depend on the traits in- 
volved. 
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Questions also have arisen as to whether microbes, 
including those in human intestines, could acquire 
transgenes from commercial GE plants. The movement 
of transgenes from plants to microbes has been dem- 
onstrated, but this transfer depends on there being ho- 
mologous regions in the plant's transgene and the mi- 
crobe's DNA, as well as a means to release the plant's 
DNA in close proximity to a microbe with the capacity 
to take up the DNA (Gebhard and Smalla 1998, Nielsen 
et al. 1998, Bertolla and Simonet 1999). For example, 
Kay et al. (2002) showed that antibiotic resistance 
transgenes in a plant's chloroplast could be transferred 
to a microbe as a result of a co-infection of the plant 
by a plant pathogen and another bacterium with ho- 
mologous DNA sequences and competency for DNA 
uptake. So far, such studies demonstrate that inter-king- 
dom transfer can occur, but several idealized conditions 
are needed for the transfer to be detected. The com- 
bination of these conditions in the field should be rare, 
although this process can be important on an evolu- 
tionary time scale. 

Viruses 

GE baculoviruses.-Non-transgenic baculoviruses 
(BVs) are used for biological control of insect pests, and 
researchers are exploring transgenic methods to make them 
more effective (Box 3). The risks associated with recom- 
binant viruses include possible effects of gene flow and 
negative effects on nontarget organisms. Baculoviruses 
can exchange or acquire new genetic material from 
other BVs via several mechanisms. When recombinant 
and wild-type BVs are replicating in an insect host, 
transgenes can be transferred through recombination 
(Merryweather-Clarke et al. 1994). In addition, genetic 
material is commonly transferred by transposable el- 
ements (Friesen 1993). These processes suggest that 
transgene movement from transgenic BVs to wild-type 
BVs is likely, but the ecological effects of this type of 
gene flow are not well understood. 

Another concern that has been raised about recom- 
binant BVs is the potential for persistence in the en- 
vironment, which could influence gene flow as well as 
nontarget organisms. BVs infect insects and are not 
pathogenic to plants or vertebrates. The viral particles 
of baculoviruses are embedded in a protein matrix, and 
they can persist outside the host for years if they are 
not subject to ultraviolet radiation. Recombinant BVs 

may be particularly persistent in soils, due to slower 
decomposition of the insect cadaver (Fuxa et al. 1998). 
Such pathogen reservoirs may play important roles in 
transmission dynamics and therefore may tend to am- 
plify the persistence of recombinant BVs, allowing 
them more opportunities for recombination and impacts 
on nontarget organisms (Richards et al. 1998). 

Studies of nontarget hosts of the virus have shown 
that the effects of recombinant BVs may differ sub- 
stantially from the effects of wild-type BVs. Virus pro- 
ductivity, distribution, and the timing of virus release 
all may vary, such that the effects of recombinant BVs 
on a suite of nontarget hosts may be difficult to predict 
(Richards et al. 1998, Hernandez-Crespo et al. 1999). 
Moreover, effects on predators and parasitoids also 
vary substantially. While most generalist predators do 
not seem to be negatively impacted by eating prey in- 
fected with recombinant BVs (Smith et al. 2000), there 
is some evidence of lower fitness of parasitoids de- 
veloping in host larvae infected with recombinant BVs 
compared to wild-type BVs (McCutchen et al. 1996). 
In addition, several studies have shown that recombi- 
nant BVs survive in some predators, and this may pro- 
vide a pathway for the persistence and dispersal of the 
genetically engineered viruses (Smith et al. 2000). To 
summarize, it is too early to know whether GE bacu- 
loviruses can be used as environmentally benign sub- 
stitutes for their non-transgenic counterparts. 

Effects of virus-resistant crops.--Potential ecologi- 
cal risks associated with the widespread adoption of 
transgenic virus resistance in plants fall into three cat- 
egories: (1) possible benefits of transgenic virus resis- 
tance to weedy relatives of the crop (discussed above); 
(2) recombination between viral transgenes and invad- 
ing viruses; and (3) interactions between transgene 
products and invading viruses, such as synergies or 
transcapsidation (Power 2002, Tepfer 2002). Recent 
molecular strategies for minimizing risks of recombi- 
nation or other transgene-virus interactions through the 
careful selection of gene constructs are promising, but 
they cannot prevent all ecological risks discussed here 
(Power 2002). 

Recent studies suggest that recombination between 
an invading virus and the viral RNA encoded by the 
transgenic plant is highly probable (Miller et al. 1997, 
Aaziz and Tepfer 1999, Hammond et al. 1999, Tepfer 
2002). Several hazards may be associated with virus- 
transgene recombination. First, increased virulence 
could lead to greater damage to hosts of the virus, 
including any wild hosts in natural habitats. Such in- 
creased plant damage could, in turn, lead to changes 
in competitive relations between plants, which could 
have profound effects on natural plant communities. 
Second, if recombination were to lead to alterations of 
host range, similar changes in plant competitive rela- 
tions would be expected. Moreover, any changes in 
transmission characteristics resulting from recombi- 
nation could allow the recombinant virus to colonize 
hosts that were previously unavailable to the parental 
virus. Again, this could lead to significant changes in 
species interactions within natural plant communities. 
Recent laboratory studies have demonstrated increased 
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virulence, increased competitiveness, and expansions 
of viral host range due to virus-transgene recombi- 
nation (Schoelz and Wintermantel 1993, Kiraly et al. 
1998, Borja et al. 1999). These studies illustrate the 

potential for significant impacts of transgenic virus re- 
sistance on the population biology of viruses in nature, 
as well as impacts on plant communities. 

Another hazard of releasing crops with engineered 
virus resistance is the enhancement of virus spread 
through interactions between transgene products and 

invading viruses (de Zoeten 1991, Miller et al. 1997). 
One type of interaction that may pose relatively low 

ecological risks is transcapsidation (encapsidation of 
viral RNA of one virus by the coat protein of another 
virus in mixed infections). Many authors have reported 
transcapsidation of invading viruses in transgenic 
plants producing coat proteins for a wide range of vi- 
ruses (for review see Power 2002, Tepfer 2002), al- 

though field studies indicate that such transcapsidation 
occurs at low rates (Thomas et al. 1998, Fuchs et al. 

1999). Transcapsidation can result in the one-time col- 
onization of new hosts, but may be unlikely to lead to 

long-term changes in transmission patterns because vi- 
rus replication would produce the original parental vi- 
rus. 

A second type of interaction between transgene prod- 
ucts and invading virus may present more significant 
risks. Synergistic interactions between viruses in mixed 
infections can result in increased virus replication and 
disease that is much more severe than that caused by 
either virus alone (Miller et al. 1997). When synergy 
between invading viruses and transgene products re- 
sults in higher rates of virus replication, an increase in 
virus population levels in transgenic hosts could lead 
to greater disease pressure on nearby plantings of non- 

transgenic varieties or wild hosts. The combination of 

synergy and transgene flow may also pose significant 
risks in wild hosts if synergy results in increased dis- 
ease severity. 

Evolution of resistance in pests 

The evolution of resistance in insects, weeds, and 

pathogens to pest control methods has become a serious 

problem worldwide, especially in regions with modern, 
industrialized agriculture. Resistance occurs quickly 
when there is strong, uniform selection on a pest pop- 
ulation for long periods of time over large geographic 
areas. Modern intensive agriculture, with its reliance 

on pesticides, monoculture, and uniform production 
practices, provides these conditions, and resistant in- 
sects, weeds, viruses, fungi, and other pathogens have 

proliferated. In the United States, the cost of resistance 
to insecticides was estimated at about U.S. $133 million 

annually in extra insecticide applications, measured in 
1980 dollars (Pimentel et al. 1980). For some pests, 

such as the Colorado potato beetle and diamondback 

moth, resistance is so extensive that few effective pest 
control alternatives remain. 

To illustrate ongoing problems associated with re- 
sistant pests in general, we focus on crops with Bt 
toxins for insect resistance (Box 2). Resistance to Bt 
toxins in sprays has been documented in >17 insect 

species (Tabashnik 1994, Huang et al. 1997), so it is 

widely assumed that resistance to transgenic Bt crops 
will occur as well (Gould 1998, Andow 2001, Tabash- 
nik et al. 2003). Indeed, resistance in pink bollworm 
to Bt cotton crops was reported in 1997 (Tabashnik et 
al. 2000), but during the past seven years frequencies 
of resistant insects have remained very low, perhaps 
due to fitness costs and resistance management strat- 

egies (Carriere et al. 2003, Tabashnik et al. 2003). The 

goal of resistance management is to delay or prevent 
the evolution of resistance in the target pests. The pro- 
ducers and users of Bt crops are the major beneficiaries 
of resistance management, and they would pay the costs 
of poor stewardship and resistance failures. Two ad- 
ditional reasons have compelled government agencies 
to take an active role in ensuring that effective resis- 
tance management is implemented. First, other farmers 
who depend on Bt-based insecticides and do not use 
Bt crops are concerned about resistant insects. Under 

present federal guidelines, Bt sprays, but not transgenic 
Bt crops, can be used as a part of organic agricultural 
production, and it is important to prolong the efficacy 
of Bt sprays. Second, resistance management of trans- 

genic Bt crops preserves a pest control method that 
results in less harm to the environment and human 
health than many other insecticides. Bt toxins have a 

relatively narrow range of nontarget species effects, 

very low mammalian toxicity, and no record of car- 

cinogenicity. Loss of Bt-based controls because of the 
evolution of resistance would probably increase use of 
insecticides that are more harmful to the environment 
or human health in some crops. 

Similar concerns apply to the overuse of herbicides 
and the rapid evolution of herbicide-resistant weeds. 
More than 286 weed biotypes have evolved resistance 
to various herbicides during the past 30 years (see e.g., 
International Survey of Herbicide Resistant Weeds 

[available online]).9 Widespread adoption of a limited 
number of herbicide-resistant crops could aggravate 
problems with resistance, especially if the same her- 

bicides are used repeatedly in crop rotations. Herbicide 
resistance also can spread from transgenic crops to feral 

crop plants and hybridizing weeds via pollen and seed 

dispersal, as mentioned above. 

9 (http://www.weedscience.org) 
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Nontarget effects 

In agriculture, nontarget organisms are species that 
are not the direct target of pest control methods. These 

species can be grouped into several overlapping cate- 

gories: (a) beneficial species, including natural enemies 
of pests (lacewings, ladybird beetles, parasitic wasps, 
and microbial parasites) and pollinators (bees, flies, 
beetles, butterflies and moths, birds and bats); (b) non- 

target herbivores; (c) soil organisms; (d) species of 
conservation concern, including endangered species 
and popular, charismatic species (e.g., the monarch but- 

terfly); and (e) species that contribute to local biodi- 

versity. 
Effects of GEOs on nontarget organisms will range 

from positive to negative and will depend on a suite 
of biological, physical, and geographical factors. Many 
scientists and regulatory agencies have highlighted the 
need for a case-by-case analysis of ecological effects 
that integrates laboratory and field studies, and that 
includes data on spatial and temporal variability. Lethal 
or sublethal effects of GEOs on nontarget species can 
occur directly due to exposure to a GEO or its products, 
or indirectly if a GEO alters the physical or biological 
environment on which a nontarget species depends. 
Indirect effects could arise from changes in food supply 
or in habitat quality (e.g., changes in soil properties, 
plant communities). Although analysis of indirect haz- 
ards is complex, in some cases they may be as impor- 
tant or more important than direct hazards. Positive 

nontarget effects would be expected when GE products 
replace ecologically damaging practices, such as the 
use of agrochemical pesticides. 

Nontarget effects of transgenic crops with insecti- 
cidal properties (i.e., Bt corn, Bt cotton) have received 
the greatest attention for obvious reasons: if a Bt toxin 
kills pest insects, it also has the potential to kill other 
insects. The U.S. Environmental Protection Agency re- 

quires data on nontarget effects for a standard group 
of soil organisms and beneficial insects, but these short- 
term studies often involve sample sizes that are too 
small for meaningful statistical analysis (Marvier 
2002). Studies in the peer-reviewed literature have 

largely focused on the effects of Bt corn on a small 
number of insect species, including monarch and swal- 
lowtail butterflies (see Losey et al. 2001, Obrycki et 
al. 2001, Sears et al. 2001, Zangerl et al. 2001). But- 

terfly larvae inadvertently ingest corn pollen that is 

deposited on their food plants. Recent studies indicated 
that survival and larval growth rates vary according to 
the transformation event (type of Bt corn) and butterfly 
species, and that current exposure levels appear to be 
minor (Sears et al. 2001). Unlike DDT and other per- 
sistent pesticides, Bt toxins are unlikely to accumulate 
in vertebrates because most of these toxins are readily 

digested by vertebrates. Negative tritrophic level ef- 
fects of transgenic Bt corn pollen and Bt sprays have 
been reported for the green lacewing (Chrysoperla car- 
nea) in the laboratory (reviewed by Hilbeck 2001, Dut- 
ton et al. 2002, 2003). Recent studies indicate that lace- 

wing larvae are not directly affected by Bt toxin, but 
that differences in prey quality between treatments may 
explain negative tritrophic effects detected previously 
(Romeis et al. 2004). Plot-level studies detected no 

significant effects of Bt corn on the abundance of green 
lacewings, although the authors point out the need for 
studies on larger fields because of high between-year 
variability and small plot sizes (Pilcher et al. 1997). 
Prey insects vary in how much Bt toxin they assimilate 
(Head et al. 2001); therefore, the abundance and di- 
versity of prey insects as well as an insect predator's 
foraging preferences will affect the results of Bt studies 
carried out under field conditions. Other types of trans- 

genic insecticidal toxins such as lectins and protease 
inhibitors will require more scrutiny than Bt, but bio- 

technology companies have largely steered clear of 
these strategies for insect control. 

Single-species studies of nontarget effects represent 
a narrow approach to assessing the positive and neg- 
ative ecological impacts of nontarget effects. Under- 

standing the ecological consequences of nontarget ef- 
fects also depends on accurately identifying what phys- 
ical and biological processes a transgenic organism 
may alter, and understanding what impacts these al- 
terations have on ecosystems. Much of the focus of 

nontarget studies has relied on measuring changes in 
survival and reproduction of a limited number of focal 

species in laboratory and small-scale field studies, 
without addressing the potential for community and 

ecosystem level effects after large-scale introductions. 

Negative nontarget effects on one species or a group 
of species may cause a cascade of ecological changes 
that result in the disruption of biotic communities or 
in the loss of species diversity or genetic diversity with- 
in species (Rissler and Mellon 1996), or they may have 
no repercussions, especially in communities with high 
redundancy of ecological function. Alternatively, pos- 
itive effects of GEOs may enhance the diversity, com- 

plexity, and function of biotic communities. 
Studies of nontarget effects of one Bt toxin (CrylAb) 

in soils and its consequences have begun to assess the 

potential for community-level, nontarget effects (re- 
viewed by Stotzky 2001). Under certain soil conditions 
the CrylAb protein can remain active for months, but 
no effects of the CrylAb protein were observed on 
earthworm mass or mortality or on total numbers of 
nematodes, protozoa, bacteria, or fungi in soils over a 
45-day period (Stotzky 2001). Some genetically en- 
gineered crops and microorganisms have been shown 
to affect soil ecosystems (e.g., Dunfield and Germida 
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2001), but the ecological significance of these changes 
is unclear. In summary, ecological studies can provide 
information to assess the significance and relative im- 
pacts of nontarget effects on communities and ecosys- 
tems if they are designed to compare transgenic and 
relevant alternatives. These studies should rely on in- 
tegrating effects on single species with those on com- 
munity and ecosystem levels, such as species diversity 
and ecological function (e.g., nutrient cycling). 

Effects of GEOs on agricultural practices 
All agricultural practices can have significant im- 

pacts on ecological systems, within crop fields as well 
as on adjacent areas. Depending on the case-specific 
details, transgenic crops may mitigate, exacerbate, or 
not affect existing ecological consequences of current 
agricultural practices, and evidence suggesting envi- 
ronmental benefits as well as environmental risks ex- 
ists. Here we focus on the impacts of current transgenic 
crops on agricultural practices. Current crops are in- 
tricately linked to changes in pesticide use that may 
include shifts in the types of pesticides used, what 
quantities are used, and the timing of applications. 

Globally and in the United States, herbicide-tolerant 
crops represent the largest acreage of GE crops cur- 
rently used (James 2003). Large-scale adoption of her- 
bicide-tolerant crops has been correlated with changes 
in herbicide use practices. Not surprisingly, the intro- 
duction of glyphosate-tolerant soybeans in the United 
States is associated with increases in glyphosate usage 
(Wolfenbarger and Phifer 2000, Carpenter et al. 2002), 
and decreases in the number of herbicide applications 
per acre (Carpenter et al. 2002). Glyphosate has low 
toxicity to vertebrates and invertebrates, as well as soil- 
binding and degradation characteristics that result in 
less movement or transport within the environment, 
compared to many other herbicides when standardized 
by mass. Quantifying nontarget effects of herbicides 
on ecological communities within and near cropland 
will contribute greatly to comparing the ecological ef- 
fects of transgenic and conventional agricultural prac- 
tices. 

In the United Kingdom, the indirect effects of using 
herbicide-tolerant crops were examined experimentally 
in the Farm Scale Evaluations Project. Researchers re- 
ported significant changes in abundances and diversity 
of invertebrates associated with the management of ge- 
netically engineered herbicide-tolerant beets, oilseed 
rape, and corn, both within cropland and in habitats 
adjacent to fields (Andow 2003b, Brooks et al. 2003, 
Haughton et al. 2003, Roy et al. 2003). These studies 
underscore the value of a case-by-case approach be- 
cause the direction and magnitude of effects on inver- 
tebrates varied among the crops studied. For example, 
most decreases in invertebrate taxa were associated 

with transgenic herbicide-tolerant beet and oilseed 
rape, and most increases were associated with trans- 
genic herbicide-tolerant corn. Changes in invertebrate 
abundance were associated with more effective weed 
control in fields planted with genetically engineered 
beets and oilseed rape (Heard et al. 2003). In particular, 
timing of herbicide spraying affected weed control and 
therefore the associated invertebrate communities. In- 
vertebrate detritivores increased in fields of all three 
genetically engineered herbicide-tolerant crops, which 
was attributed to greater biomass of dead weeds in these 
fields (Hawes et al. 2003). The design of the Farm Scale 
Evaluations most likely underestimated ecological ef- 
fects because cumulative effects were not included and 
because a split-plot design could reduce the possibility 
of detecting scale effects. These results highlight earlier 
discussions about the impacts of "clean" agricultural 
fields and field margins on habitat that supports other 
organisms, including birds (e.g., Watkinson et al. 2000) 
and concerns about energy contents of seeds available 
to game and nongame species (Krapu et al. 2004). 

Transgenic herbicide-tolerant crops may promote 
conservation tillage practices, although they are not 
required for low- or no-till agriculture. Conservation 
tillage increases soil quality, decreases erosion, de- 
creases nutrient leaching, and inhibits the build-up of 
weed seeds in the soil (e.g., Carpenter et al. 2002; Box 
1). Another environmental benefit of no-till agriculture 
is greater sequestration of atmospheric carbon in the 
form of soil organic matter. Surveys in the United 
States indicate that conservation tillage in soybean pro- 
duction has increased substantially between 1989 and 
2000 with the largest increases occurring between 1991 
and 1993 (prior to the commercialization of Roundup 
Ready soybean; see Core4 Conservation Alliance table 
of conservation tillage trends [available online]).'0 The 
Conservation Tillage Information Center reports a cor- 
relation between no-till conservation practices and the 
use of herbicide-tolerant soybeans (see Fawcett and 
Towery 2003). How other factors, such as farm sub- 
sidies or other soil conservation programs, may also 
correlate was not discussed, but these may be important 
causal factors in explaining trends in no-till conser- 
vation. 

Insecticide use is expected also to change with trans- 
genic crops having insecticidal properties, such as 
those engineered with Bt genes (e.g., Box 1), but other 
factors can cause these shifts too (e.g., economic forc- 
es, new machinery, and new landowner farming pref- 
erences). Significant reductions in insecticide use for 
Bt cotton have been reported (e.g., Ortman 2001, Pray 
et al. 2002), as well as reduced pest populations (Car- 

10 (http://www.ctic.purdue.edu/Core4/CT/CTSurvey/ 
NationalData8902.html) 
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Box 7. Common definitions used in risk assessment 

* Harm-An unwanted effect, for example, on the state of a gene pool, population, species, ecological 
community, or ecosystem processes. 

* Hazard-An action, substance, or phenomenon that has the potential to cause harm. 
* Risk-The likelihood of a hazard being realized. Risk typically is expressed as the product of two 

probabilities: the probability of exposure to the hazard and the probability of the hazard causing harm. 
* Risk assessment-The science and process of estimating risk. 
* Risk management-The process of considering alternative courses of action, and selecting the most 

appropriate option after integrating the results of risk assessment with engineering, social, economic, 
and political concerns in order to reach a decision. 

* Risk analysis-The process including risk assessment, risk management, and risk communication. 

riere et al. 2003). Although not widely adopted, Bt 
sweet corn may also reduce insecticide use associated 
with controlling corn earworm (U.S. EPA 2001). How- 
ever, depending on the pest species targeted, a Bt crop 
may or may not replace insecticide use. For example, 
prior to the introduction of Bt corn that targets the 
European corn borer, only a small percentage of corn 
was treated with insecticides to control corn borer in- 
festations (Obrycki et al. 2001). Environmental benefits 
associated with virus-resistant crops are also uncertain. 
Some virus management strategies rely on insecticides 
to control the insect vector of the virus (e.g., aphids), 
but this practice is not common because vector control 
is often ineffective. Thus, environmental benefits from 
using less insecticide with virus-resistant crops are 
likely to be limited, except when a real or perceived 
need to use insecticides for controlling vectors can be 
alleviated. 

As reviewed above, much of the effort to document 
environmental benefits has focused on the correlation 
between adoption of GE crops and concomitant alter- 
ations in management practices. These findings often 
rely on surveys of farmers and data from the U.S. De- 
partment of Agriculture that are aggregated at large 
spatial scales (i.e., by state). The interpretation of such 
correlations should be strengthened by critically eval- 
uating alternative hypotheses and explanations for ob- 
served trends. Although a hypothesis-driven approach 
will improve the interpretation of these data, this is not 
a sufficient means for documenting environmental ef- 
fects. The collective information that we have on the 
adoption of herbicide-tolerant crops illustrates the lim- 
itations of assessing risks and benefits using only in- 
formation on how management practices change. Her- 
bicide-tolerant crops can have positive environmental 
effects relative to previous herbicide practices, as men- 
tioned above, but their long-term effects on local bio- 
diversity are not yet known (e.g., Firbank 2003). Single 
measures of environmental risk or of environmental 

benefits will give only partial information to evaluate 
the suite of environmental impacts. Well-designed, sci- 
entific studies that include ecological indicators, as well 
as the management changes associated with the adop- 
tion of genetically engineered crops, are needed to doc- 
ument positive as well as negative environmental im- 
pacts. 

RISK ASSESSMENT, REGULATION, 
AND FUTURE RESEARCH 

Risk assessment terminology 

Risk assessment methodology assigns specific and 
fairly technical meanings to commonly used words. 
Without going into detail, Box 7 provides a guide as 
to how these terms typically are applied in the context 
of GEOs (e.g., NRC 1996, 2002a). Although this ter- 
minology may be more useful for evaluating the effects 
of toxic chemicals, radioactivity, faulty machinery, and 
other hazards, as opposed to those discussed in this 
report, it is helpful to understand how specific terms 
are interpreted and used in discussions of biosafety 
issues. 

Uncertainty, monitoring, and adaptive management 

Risk assessment that is carried out prior to com- 
mercialization has several inherent weaknesses. In gen- 
eral, small-scale, pre-commercial field experiments are 
not sufficiently sensitive enough to detect small or 
moderate effects of a GEO. Small-scale studies will 
readily detect order-of-magnitude differences in an 
ecological effect, but less dramatic effects will be dif- 
ficult to document due to variability among replicates 
(e.g., Andow 2003a). Adding more replicates can ad- 
dress this problem, but pre-commercial field studies are 
not likely to include the large amount of replication 
needed to identify small but important effects. To il- 
lustrate this type of problem, we conducted a simple 
statistical analysis of some published insect density 
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data (cf., Oelhert 2000, Marvier 2002). Andow and 
Ostlie (1990) measured the population density of a tar- 
get pest of Bt corn, the European corn borer, in three 
environments replicated four times each. A power anal- 
ysis of their data shows that 10 replicates would be 
needed to detect a statistically significant difference of 
200% among environments, given the observed vari- 
ation among replicates. To detect a 10% difference in 
population density, they would have had to examine 
134 replicates for each environment ! Thus, many 
small-scale field experiments involving a Bt crop, for 

- 

instance, are unlikely to detect 10% increases or de- 
creases in the abundance of nontarget species unless a 
power analysis indicates that replication levels are suf- 
ficient. Yet ecological effects of 10% could be highly 
biologically significant. 

Recommendation 4 
Monitoring of commercial GEOs. Well-designed 

monitoring will be crucial to identify, manage, and 
mitigate environmental risks when there are reasons 
to suspect possible problems. In some cases, post- 
release monitoring may detect environmental risks 
that were not evident in small-scale, pre-commercial 
risk evaluations. Because environmental monitoring 
is expensive, a clear system of adaptive management 
is needed so that monitoring data can be used ef- 
fectively in environmental and regulatory decision- 
making. 

If the pre-commercialization risk analysis process 
only identifies large, order-of-magnitude ecological ef- 
fects, it should be evident that low probability events 
and low magnitude effects will not be detected (Fig. 
3). These include both infrequent effects and small ef- 
fects. As the GEO is commercialized over larger spatial 
and temporal scales, however, it may become possible 
to observe smaller and less frequent ecological risks. 
Rigorous monitoring may be the only realistic way to 
detect such effects. Such monitoring should not, of 
course, substitute for rigorous pre-commercialization 
testing at logistically feasible scales, nor should the 
inherent limitations of monitoring be overlooked. By 
the time a problem is common enough to be detected 
by a monitoring program, it may be too late to mitigate 
or reverse the problem. Even if this is the case, how- 
ever, detection of irreversible environmental problems 
can allow for actions to prevent similar situations from 
occurring in the future. 

A second reason that ecological monitoring may be 
needed after commercialization is that ecosystems are 
complex. This complexity stems from year-to-year var- 
iation, spatial variation, and indirect biotic effects. Be- 
cause laboratory and small-scale field experiments do 
not adequately replicate all of the interactions that oc- 
cur in an ecosystem, the only way to observe the full 
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FIG. 3. Diagram illustrating challenges of using small- 
scale field experiments to detect environmental risks that are 
infrequent or relatively small. Risk is a combination of hazard 
(x-axis) and exposure (y-axis). Risks that have a low prob- 
ability of occurrence (low exposure, less frequent effects) are 
unlikely to occur during a small-scale experiment and are 
therefore unlikely to be detected. Risks that have a low en- 
vironmental effect (low hazard, small effects) are unlikely to 
be measurable in a small-scale experiment because of the high 
experimental variability as discussed following Recommen- 
dation 4. 

range of ecological effects of a GEO is to observe it 
in actual ecosystems. Some of these effects cannot be 
predicted beforehand, in which case ecological moni- 
toring will be necessary to detect any adverse ecolog- 
ical effects. 

For example, one concern about transgenic plants is 
their potential to invade neighboring ecosystems. How- 
ever, short-term, spatially limited field trials are poor 
predictors for environmental impact of invasions (Kar- 
eiva et al. 1996). Small-scale field trials conducted as 
part of a permit or petition for deregulation of a trans- 
genic crop will ultimately have little predictive power 
regarding potential ecosystem effects or potential for 
invasiveness. Kareiva et al. (1996) explored the pre- 
dictive power of a large data set comparing potential 
invasiveness of transgenic and non-transgenic canola 
over three years in the United Kingdom (Crawley et 
al. 1993). They found that predictive power varied de- 
pending upon how many sites and years were incor- 
porated in the analyses, and the magnitude of errors 
often exceeded 100%. These authors stated "we have 
so little faith in models and short-term experiments 
regarding predictions about invasions, that we advocate 
extensive monitoring of any introduced [transgenic 
crop] with any ecologically relevant traits (such as dis- 
ease resistance, herbivore tolerance, and so forth)." We 
do not mean to imply that small-scale studies are use- 
less, but rather that they may be insufficient and mis- 
leading, depending on the questions being asked and 
the statistical power of the data analysis. 
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If risk management practices are implemented at the 
time of commercialization, due to specific environ- 
mental concerns, ecological monitoring will be needed 
to document whether these management practices have 
been successful. For example, it may be possible to 

delay the evolution of resistance to Bt crops by main- 

taining large enough refuges (areas where non-Bt va- 
rieties of the crop are grown) so that selection for re- 
sistance is reduced (Gould 1998, Andow and Ives 2002, 
Ives and Andow 2002). Monitoring is needed to eval- 
uate the success of resistance management strategies 
and to adjust them if resistance arises. In a similar vein, 
monitoring could be used to determine whether her- 
bicide-resistance transgenes have spread to weedy rel- 
atives of a particular crop. An obvious challenge, how- 
ever, is to decide when monitoring is needed in the first 

place, and how to design monitoring programs that are 
both practical to carry out and scientifically rigorous. 

Environmental monitoring is expensive, so infor- 
mation from monitoring activities should be used with- 
in a clear system of adaptive management (NRC 
2002a). Adaptive management involves repeated cy- 
cles of goal-setting, program design, implementation, 
and evaluation, in a deliberate "learn-as-you-go" fash- 
ion. One problem with many adaptive management pro- 
grams is that they are not well-suited for dealing with 

long-term ecosystem responses (Moir and Block 2001). 
A more immediate problem for monitoring GEOs is 
that adaptive management systems have not been de- 

veloped specifically for this purpose (but see Kapus- 
cinski et al. 1999). Moreover, monitoring standards and 
action triggers have not been established. For example, 
to manage resistance evolution, the frequency of re- 
sistance should be monitored in the field, but additional 
research is needed to set monitoring standards, imple- 
ment action triggers, and determine appropriate man- 

agement responses that could be taken to mitigate the 

problem (Andow and Ives 2002). 
Monitoring for potential adverse effects of specific 

GEOs should follow four complementary strategies 
(NRC 2002a). First, the spatiotemporal distribution of 
the GEO should be monitored. This will provide an 
historical record of GEO use, which can then be cor- 
related with other patterns to examine and test possible 
environmental effects of a particular GEO. Because 

many environmental effects are localized to small areas 
on the order of the dispersal ranges of the species in- 
volved, the spatial distribution of GEOs should be char- 
acterized on as fine a spatial scale as feasible. For some 
GEOs, such as corn and soybean in the United States, 
this will be a simple exercise of reporting sales and 
associated use statistics. For other GEOs, such as fishes 
or canola, where organisms or genes escape into wild 
or feral populations, this will be a greater challenge. 

Second, existing technical personnel in agriculture 
and natural areas management should receive supple- 
mental training so that they can detect unexpected en- 
vironmental effects of GEOs (NRC 2002a). These 
trained-observer networks are already functioning in- 

formally. For example, many agricultural extension 
workers are hearing from farmers about some potential 
effects of GEOs, and if they had additional training, 
they would be better prepared to separate pure fiction 
from possible or plausible fact. By using existing net- 
works of observers, the cost of this monitoring is min- 
imized. Information gained could feed into research, 
so that the reported effects can be rigorously tested. 

This leads to a third approach, which is hypothesis- 
driven monitoring research. In the context of moni- 

toring, research can test the observations from the 
trained observers or from spatiotemporal correlations. 
As a case in point, several extension workers from the 
U.S. Corn Belt reported that Bt corn stalks were tough- 
er than non-Bt corn, resulting in less lodging, lower 

preference by livestock, slower decomposition, and 
even damage to tractors. Following these reports, Sax- 
ena and Stotzky (2001) found that Bt corn is in fact 

tougher than non-Bt corn due to higher lignin content. 

Although the ecological consequences of these findings 
remain to be evaluated, this illustrates informal link- 

ages between observer networks and research. Re- 
search also can be used to develop the appropriate mon- 

itoring methods. For example, to monitor the changing 
frequency of rare, nearly recessive resistance genes in 
natural insect populations, Andow and Alstad (1998) 
developed an F2 screen, which improves monitoring 
efficiency by several orders of magnitude (Andow and 
Ives 2002). Furthermore, research can confirm or refute 
uncertain risk assessments. Initially, laboratory and 
small-scale field experiments might indicate that cer- 
tain nontarget effects might occur at larger spatial 
scales. If this can be articulated as a testable hypothesis, 
monitoring research can be developed for its evalua- 
tion. 

Finally, a deliberative process involving discussions 
with stakeholders should be initiated to identify indi- 
cators for monitoring environmental effects of GEOs 
(NRC 2002a). Deliberative processes are by their na- 
ture adaptive, and by involving stakeholders effective- 

ly, a clear consensus for how to proceed with long- 
term environmental monitoring of GEOs can be de- 

veloped. Although we do not presume to identify these 
indicators at this time, ecological research on moni- 
toring (e.g., Marvier et al. 2001) suggests that these 
indicators should be targeted to specific effects, and 
should focus on areas at greatest risk to minimize cost 
and maximize usefulness. 
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Regulation of GEOs in the United States 

Recommendation 5 
Regulatory considerations.-Science-based regu- 

lation should: (1) subject all transgenic organisms 
to a similar risk assessment framework, (2) recog- 
nize that many environmental risks are GEO- and 
site-specific, and therefore that risk analysis should 
be tailored to particular applications, and (3) in- 
corporate a cautious approach to environmental 
risk analysis. 

Although the U.S. regulatory system for GEOs has 
worked reasonably well up to now for GE crops, federal 
regulatory policies are often imperfect. The current 
system needs to be improved, especially as new types 
of GEOs are proposed (NRC 2002a). Here we sum- 
marize salient features of how GEOs are regulated at 
present, with the caveat that some of these regulations 
are in the process of being modified as this paper goes 
to press. A thorough discussion of how GEOs are reg- 
ulated is beyond the scope of this paper. 

In the United States, transgenic organisms are reg- 
ulated under the "Coordinated Framework", which ex- 
tends the authority of previously existing legislation to 
regulate the use of transgenic organisms (OSTP 1986, 
1992). The goal of the framework is to provide ade- 
quate regulation to ensure human health and environ- 
mental safety, while maintaining sufficient regulatory 
flexibility to avoid impeding the growth of the bio- 
technology industry. Three federal executive agencies 
and 10 federal statutes were identified to regulate 
GEOs. Environmental risk assessment falls under three 
agencies, the U.S. Department of Agriculture (USDA), 
the Environmental Protection Agency (EPA), and the 
Food and Drug Administration (FDA), which primarily 
regulate transgenic organisms as potential plant pests, 
pesticides, and food or drugs, respectively. USDA and 
FDA also are required to examine the consequences of 
any agency decision on the environment through the 
National Environmental Policy Act (NEPA). These 
agencies review the safety of GEOs to be used in the 
United States, but they do not consider the environ- 
mental or human health effects of the dispersal of GEOs 
to other countries. 

Many transgenic crop varieties have been approved 
for experimental and commercial use under the Co- 
ordinated Framework. As of February 2004, >10 000 
permits and notifications have been approved by USDA 
for experimental field trials of GE crop varieties (ISB 
2004a). After the field-testing stage, many GEOs are 
further evaluated for commercialization. Several trans- 

genic lines of 12 plant species have been deregulated 
by USDA as of this writing (ISB 2004b). In conjunction 
with these deregulation decisions, the EPA registered 
several transgenic insecticidal crop lines (seven corn, 

with four still commercially available, two cotton, and 
one potato) and a potato line with transgenic resistance 
to a virus. EPA also determines food tolerance limits 
(maximum levels of residues) or grants exemptions on 
food tolerance limits for insecticidal transgenic plants. 
(As of this writing, the EPA has granted tolerance ex- 
emptions for registered, transgenic microbial pesticides 
and insecticidal plants.) The FDA's primary role is to 
oversee food and feed safety, which are not discussed 
here, but some of this agency's responsibility involves 
environmental assessments. For example, transgenic 
Atlantic salmon expressing an introduced growth hor- 
mone gene are regulated by FDA under the Federal 
Food, Drug, and Cosmetics Act and are subject to the 
National Environmental Policy Act. Transgenic salmon 
are regulated by the FDA as new animal drugs because 
the transgene is effectively a hormone delivery system, 
and the potential adverse environmental effects asso- 
ciated with its decision on transgenic salmon will be 
assessed by FDA. For all other organisms not men- 
tioned above, such as transgenic bacteria for bio- 
remediation, federal oversight is authorized by EPA 
under the Toxic Substances Control Act. 

The Coordinated Framework was controversial dur- 
ing the earliest field tests of genetically modified or- 

ganisms (e.g., Rissler and Mellon 1996.), and some 
issues remain unresolved. The Framework has some 

significant lapses (NRC 2000, 2002a, b); for example, 
the quality of the research used for regulatory approval 
has been criticized as scientifically inadequate in some 
cases (NRC 2000, 2002a). Another concern is that 
some transgenic organisms are inadequately assessed, 
in part due to language in the rules of the regulation 
that emphasizes the intended use of the transgenic or- 
ganism as a criterion for oversight, as opposed to using 
scientific considerations of harm (NRC 2002a). There- 
fore, the producer's stated use for the transgenic or- 
ganisms influences what roles FDA, EPA, and USDA 
have in regulation. 

Also, by utilizing only a subset of the laws available, 
the Framework does not consistently involve all the 
relevant federal agencies in oversight of particular clas- 
ses of GEOs. For example, authority for oversight of 
transgenic fishes under the Endangered Species Act or 
the Lacey Act could bring to bear the expertise of the 
U.S. Fish and Wildlife Service and the National Marine 
Fisheries Service (CEQ and OSTP 2000). Finally, the 
Coordinated Framework does not authorize post-com- 
mercial monitoring uniformly. USDA cannot require 
monitoring for unwanted effects of transgenic plants 
that have been deregulated; EPA can require monitor- 
ing under its statutory authority, but this is restricted 
to plants with insecticidal properties. 

In the European Union and elsewhere, the regulation 
of GEOs places a greater emphasis on a precautionary 
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approach to risk assessment. The role of precaution in 
the regulation of transgenic organisms is highly con- 
tentious and, to some people, support for precaution 
symbolizes complete opposition to the use of trans- 
genic organisms. This sorry state of affairs has come 
about in part because the term "precaution" has taken 
on many meanings, and the regulatory and trade im- 
plications of its interpretation can be great. However, 
the scientific rationale for a precautionary approach to 
regulation should not be ignored amidst this contro- 
versy. Precaution is considered in a wide range of en- 
vironmental laws, treaties, and protocols (e.g., Carta- 
gena Protocol on Biosafety 2000, New Zealand Royal 
Commission 2001). Simply put, precautionary actions 
have been justified even in the absence of clear sci- 
entific evidence that a hazard is likely to occur. In other 
words, these actions involve "scientific evidentiary 
standards that err on the side of preventing serious and 
irreversible health and environmental effects" (NRC 
2002a). This simple statement belies considerable sub- 
jective ambiguity, however. What kinds of precautions 
are justified, how little evidence is tolerable, and how 
small a hazard is significant? When a risk is irreversible 
and is imposed on unwilling parties, individuals and 
society usually take a precautionary approach toward 
that risk (NRC 1996). As discussed above, several en- 
vironmental risks associated with gene flow, viral re- 
combination, evolution of resistance, and some non- 
target effects are essentially irreversible. In specific 
cases, however, even these risks can prove to be re- 
versible. Hence, additional research is needed to eval- 
uate the circumstances under which environmental 
risks are irreversible, and if reversible, the costs for 
undoing the effects. 

Need for broadly trained scientists 

Recommendation 6 
Multidisciplinary training.-Ecologists, agricultural 

scientists, molecular biologists, and others need broad- 
er training to address the above recommendations. We 
strongly encourage greater multidisciplinary training 
and collaborative, multidisciplinary research on the 
environmental risks and benefits of GEOs. 

We have argued that application of ecological ex- 
pertise and knowledge is essential during all stages of 
the development of GEOs that are to be released into 
the environment, from the earliest planning to post- 
release monitoring and management. Active involve- 
ment of professionals with an understanding of relevant 
ecological and evolutionary processes can help avert 
environmental problems and facilitate promising ap- 
plications of GEOs. New types of GEOs will need to 
be evaluated by even broader groups of scientists, in- 
cluding foresters, range scientists, aquatic ecologists, 

entomologists, and pathologists. In the future, scientific 
and technological advances will continue to expand the 
possibilities for the artificial design and manufacture 
of living organisms. Already, the young fields of gen- 
omics and bioinformatics have made it much easier to 
identify commercially important genes that potentially 
can be transferred among species. Ecologists have 
much to contribute to the broader public debate about 
how society and the environment can avoid risks and 
gain benefits from these innovations. 
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